Metamath Proof Explorer


Theorem fvressn

Description: The value of a function restricted to the singleton containing the argument equals the value of the function for this argument. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion fvressn XVFXX=FX

Proof

Step Hyp Ref Expression
1 snidg XVXX
2 1 fvresd XVFXX=FX