Metamath Proof Explorer


Theorem fzass4

Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion fzass4 BADCBDBACCAD

Proof

Step Hyp Ref Expression
1 simpll BADBCBDCBA
2 simprl BADBCBDCCB
3 1 2 jca BADBCBDCBACB
4 uztrn CBBACA
5 4 ancoms BACBCA
6 5 ad2ant2r BADBCBDCCA
7 simprr BADBCBDCDC
8 3 6 7 jca32 BADBCBDCBACBCADC
9 simpll BACBCADCBA
10 uztrn DCCBDB
11 10 ancoms CBDCDB
12 11 ad2ant2l BACBCADCDB
13 9 12 jca BACBCADCBADB
14 simplr BACBCADCCB
15 simprr BACBCADCDC
16 13 14 15 jca32 BACBCADCBADBCBDC
17 8 16 impbii BADBCBDCBACBCADC
18 elfzuzb BADBADB
19 elfzuzb CBDCBDC
20 18 19 anbi12i BADCBDBADBCBDC
21 elfzuzb BACBACB
22 elfzuzb CADCADC
23 21 22 anbi12i BACCADBACBCADC
24 17 20 23 3bitr4i BADCBDBACCAD