Metamath Proof Explorer


Theorem fzn0

Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzn0 MNNM

Proof

Step Hyp Ref Expression
1 n0 MNxxMN
2 elfzuz2 xMNNM
3 2 exlimiv xxMNNM
4 1 3 sylbi MNNM
5 eluzfz1 NMMMN
6 5 ne0d NMMN
7 4 6 impbii MNNM