Metamath Proof Explorer


Theorem gausslemma2dlem0a

Description: Auxiliary lemma 1 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypothesis gausslemma2dlem0a.p φP2
Assertion gausslemma2dlem0a φP

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0a.p φP2
2 nnoddn2prm P2P¬2P
3 simpl P¬2PP
4 1 2 3 3syl φP