Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Gauss' Lemma
gausslemma2dlem0a
Next ⟩
gausslemma2dlem0b
Metamath Proof Explorer
Ascii
Unicode
Theorem
gausslemma2dlem0a
Description:
Auxiliary lemma 1 for
gausslemma2d
.
(Contributed by
AV
, 9-Jul-2021)
Ref
Expression
Hypothesis
gausslemma2dlem0a.p
⊢
φ
→
P
∈
ℙ
∖
2
Assertion
gausslemma2dlem0a
⊢
φ
→
P
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
gausslemma2dlem0a.p
⊢
φ
→
P
∈
ℙ
∖
2
2
nnoddn2prm
⊢
P
∈
ℙ
∖
2
→
P
∈
ℕ
∧
¬
2
∥
P
3
simpl
⊢
P
∈
ℕ
∧
¬
2
∥
P
→
P
∈
ℕ
4
1
2
3
3syl
⊢
φ
→
P
∈
ℕ