Description: Auxiliary lemma 1 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gausslemma2dlem0a.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
| Assertion | gausslemma2dlem0a | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | ⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) | |
| 2 | nnoddn2prm | ⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) | |
| 3 | simpl | ⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → 𝑃 ∈ ℕ ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |