| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0a.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0b.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 4 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 6 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 7 |  | nnoddm1d2 | ⊢ ( 𝑃  ∈  ℕ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ ) | 
						
							| 9 | 8 | nnnn0d | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 10 | 6 9 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 11 | 5 10 | jca | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ0 ) ) | 
						
							| 13 |  | nno | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ( 𝑃  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 15 | 2 14 | eqeltrid | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) |