| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 |  | gausslemma2d.n | ⊢ 𝑁  =  ( 𝐻  −  𝑀 ) | 
						
							| 6 | 1 2 3 4 5 | gausslemma2dlem7 | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1 ) | 
						
							| 7 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 9 | 8 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 10 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 11 | 9 10 | jca | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 12 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 13 | 1 7 11 12 | 4syl | ⊢ ( 𝜑  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 14 | 13 | eqcomd | ⊢ ( 𝜑  →  1  =  ( 1  mod  𝑃 ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( 𝜑  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1  ↔  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) ) | 
						
							| 16 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 17 | 1 4 2 5 | gausslemma2dlem0h | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 19 | 16 17 18 | sylancr | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 20 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  2  ∈  ℕ ) | 
						
							| 22 | 1 2 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) | 
						
							| 23 | 22 | nnnn0d | ⊢ ( 𝜑  →  𝐻  ∈  ℕ0 ) | 
						
							| 24 | 21 23 | nnexpcld | ⊢ ( 𝜑  →  ( 2 ↑ 𝐻 )  ∈  ℕ ) | 
						
							| 25 | 24 | nnzd | ⊢ ( 𝜑  →  ( 2 ↑ 𝐻 )  ∈  ℤ ) | 
						
							| 26 | 19 25 | zmulcld | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℤ ) | 
						
							| 27 | 26 | zred | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℝ ) | 
						
							| 28 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 29 | 27 28 | jca | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℝ  ∧  1  ∈  ℝ ) ) | 
						
							| 31 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 32 | 31 | nnrpd | ⊢ ( 𝜑  →  𝑃  ∈  ℝ+ ) | 
						
							| 33 | 19 32 | jca | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ∈  ℤ  ∧  𝑃  ∈  ℝ+ ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( - 1 ↑ 𝑁 )  ∈  ℤ  ∧  𝑃  ∈  ℝ+ ) ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 36 |  | modmul1 | ⊢ ( ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( ( - 1 ↑ 𝑁 )  ∈  ℤ  ∧  𝑃  ∈  ℝ+ )  ∧  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 ) ) | 
						
							| 37 | 30 34 35 36 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) )  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 ) ) | 
						
							| 38 | 37 | ex | ⊢ ( 𝜑  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 ) ) ) | 
						
							| 39 | 19 | zcnd | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 40 | 24 | nncnd | ⊢ ( 𝜑  →  ( 2 ↑ 𝐻 )  ∈  ℂ ) | 
						
							| 41 | 39 40 39 | mul32d | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  ·  ( 2 ↑ 𝐻 ) ) ) | 
						
							| 42 | 17 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 43 | 42 | 2timesd | ⊢ ( 𝜑  →  ( 2  ·  𝑁 )  =  ( 𝑁  +  𝑁 ) ) | 
						
							| 44 | 43 | eqcomd | ⊢ ( 𝜑  →  ( 𝑁  +  𝑁 )  =  ( 2  ·  𝑁 ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( - 1 ↑ ( 2  ·  𝑁 ) ) ) | 
						
							| 46 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 48 | 47 17 17 | expaddd | ⊢ ( 𝜑  →  ( - 1 ↑ ( 𝑁  +  𝑁 ) )  =  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 49 | 17 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 50 |  | m1expeven | ⊢ ( 𝑁  ∈  ℤ  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  1 ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝜑  →  ( - 1 ↑ ( 2  ·  𝑁 ) )  =  1 ) | 
						
							| 52 | 45 48 51 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  =  1 ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( - 1 ↑ 𝑁 ) )  ·  ( 2 ↑ 𝐻 ) )  =  ( 1  ·  ( 2 ↑ 𝐻 ) ) ) | 
						
							| 54 | 40 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( 2 ↑ 𝐻 ) )  =  ( 2 ↑ 𝐻 ) ) | 
						
							| 55 | 41 53 54 | 3eqtrd | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  =  ( 2 ↑ 𝐻 ) ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 2 ↑ 𝐻 )  mod  𝑃 ) ) | 
						
							| 57 | 39 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( - 1 ↑ 𝑁 ) )  =  ( - 1 ↑ 𝑁 ) ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 ) ) | 
						
							| 59 | 56 58 | eqeq12d | ⊢ ( 𝜑  →  ( ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  ↔  ( ( 2 ↑ 𝐻 )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 ) ) ) | 
						
							| 60 | 2 | oveq2i | ⊢ ( 2 ↑ 𝐻 )  =  ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) ) | 
						
							| 61 | 60 | oveq1i | ⊢ ( ( 2 ↑ 𝐻 )  mod  𝑃 )  =  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 ) | 
						
							| 62 | 61 | eqeq1i | ⊢ ( ( ( 2 ↑ 𝐻 )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 )  ↔  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 ) ) | 
						
							| 63 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 64 |  | lgsvalmod | ⊢ ( ( 2  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 ) ) | 
						
							| 65 | 63 1 64 | sylancr | ⊢ ( 𝜑  →  ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 ) ) | 
						
							| 66 | 65 | eqcomd | ⊢ ( 𝜑  →  ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( 2  /L  𝑃 )  mod  𝑃 ) ) | 
						
							| 67 | 66 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 )  ↔  ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 ) ) ) | 
						
							| 68 | 1 4 2 5 | gausslemma2dlem0i | ⊢ ( 𝜑  →  ( ( ( 2  /L  𝑃 )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 69 | 67 68 | sylbid | ⊢ ( 𝜑  →  ( ( ( 2 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 70 | 62 69 | biimtrid | ⊢ ( 𝜑  →  ( ( ( 2 ↑ 𝐻 )  mod  𝑃 )  =  ( ( - 1 ↑ 𝑁 )  mod  𝑃 )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 71 | 59 70 | sylbid | ⊢ ( 𝜑  →  ( ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  =  ( ( 1  ·  ( - 1 ↑ 𝑁 ) )  mod  𝑃 )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 72 | 38 71 | syld | ⊢ ( 𝜑  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 73 | 15 72 | sylbid | ⊢ ( 𝜑  →  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) ) | 
						
							| 74 | 6 73 | mpd | ⊢ ( 𝜑  →  ( 2  /L  𝑃 )  =  ( - 1 ↑ 𝑁 ) ) |