Metamath Proof Explorer


Theorem expaddd

Description: Sum of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(a) of Gleason p. 135. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 ( 𝜑𝐴 ∈ ℂ )
expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
expaddd.2 ( 𝜑𝑀 ∈ ℕ0 )
Assertion expaddd ( 𝜑 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1 ( 𝜑𝐴 ∈ ℂ )
2 expcld.2 ( 𝜑𝑁 ∈ ℕ0 )
3 expaddd.2 ( 𝜑𝑀 ∈ ℕ0 )
4 expadd ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑁 ) ) )
5 1 3 2 4 syl3anc ( 𝜑 → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴𝑀 ) · ( 𝐴𝑁 ) ) )