Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
gausslemma2dlem0.m |
⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) |
3 |
|
gausslemma2dlem0.h |
⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) |
4 |
|
gausslemma2dlem0.n |
⊢ 𝑁 = ( 𝐻 − 𝑀 ) |
5 |
1 3
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝐻 ∈ ℕ ) |
6 |
5
|
nnzd |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
7 |
1 2
|
gausslemma2dlem0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
9 |
6 8
|
zsubcld |
⊢ ( 𝜑 → ( 𝐻 − 𝑀 ) ∈ ℤ ) |
10 |
1 2 3
|
gausslemma2dlem0g |
⊢ ( 𝜑 → 𝑀 ≤ 𝐻 ) |
11 |
5
|
nnred |
⊢ ( 𝜑 → 𝐻 ∈ ℝ ) |
12 |
7
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
13 |
11 12
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐻 − 𝑀 ) ↔ 𝑀 ≤ 𝐻 ) ) |
14 |
10 13
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( 𝐻 − 𝑀 ) ) |
15 |
|
elnn0z |
⊢ ( ( 𝐻 − 𝑀 ) ∈ ℕ0 ↔ ( ( 𝐻 − 𝑀 ) ∈ ℤ ∧ 0 ≤ ( 𝐻 − 𝑀 ) ) ) |
16 |
9 14 15
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐻 − 𝑀 ) ∈ ℕ0 ) |
17 |
4 16
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |