| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 3 |  | gausslemma2dlem0.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 4 |  | gausslemma2dlem0.n |  |-  N = ( H - M ) | 
						
							| 5 | 1 3 | gausslemma2dlem0b |  |-  ( ph -> H e. NN ) | 
						
							| 6 | 5 | nnzd |  |-  ( ph -> H e. ZZ ) | 
						
							| 7 | 1 2 | gausslemma2dlem0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 8 | 7 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 9 | 6 8 | zsubcld |  |-  ( ph -> ( H - M ) e. ZZ ) | 
						
							| 10 | 1 2 3 | gausslemma2dlem0g |  |-  ( ph -> M <_ H ) | 
						
							| 11 | 5 | nnred |  |-  ( ph -> H e. RR ) | 
						
							| 12 | 7 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 13 | 11 12 | subge0d |  |-  ( ph -> ( 0 <_ ( H - M ) <-> M <_ H ) ) | 
						
							| 14 | 10 13 | mpbird |  |-  ( ph -> 0 <_ ( H - M ) ) | 
						
							| 15 |  | elnn0z |  |-  ( ( H - M ) e. NN0 <-> ( ( H - M ) e. ZZ /\ 0 <_ ( H - M ) ) ) | 
						
							| 16 | 9 14 15 | sylanbrc |  |-  ( ph -> ( H - M ) e. NN0 ) | 
						
							| 17 | 4 16 | eqeltrid |  |-  ( ph -> N e. NN0 ) |