| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 3 |  | gausslemma2d.r |  |-  R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 5 |  | gausslemma2d.n |  |-  N = ( H - M ) | 
						
							| 6 | 1 2 3 4 5 | gausslemma2dlem7 |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) | 
						
							| 7 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 8 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 9 | 8 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 10 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 11 | 9 10 | jca |  |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) ) | 
						
							| 12 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 13 | 1 7 11 12 | 4syl |  |-  ( ph -> ( 1 mod P ) = 1 ) | 
						
							| 14 | 13 | eqcomd |  |-  ( ph -> 1 = ( 1 mod P ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 <-> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) ) | 
						
							| 16 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 17 | 1 4 2 5 | gausslemma2dlem0h |  |-  ( ph -> N e. NN0 ) | 
						
							| 18 |  | zexpcl |  |-  ( ( -u 1 e. ZZ /\ N e. NN0 ) -> ( -u 1 ^ N ) e. ZZ ) | 
						
							| 19 | 16 17 18 | sylancr |  |-  ( ph -> ( -u 1 ^ N ) e. ZZ ) | 
						
							| 20 |  | 2nn |  |-  2 e. NN | 
						
							| 21 | 20 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 22 | 1 2 | gausslemma2dlem0b |  |-  ( ph -> H e. NN ) | 
						
							| 23 | 22 | nnnn0d |  |-  ( ph -> H e. NN0 ) | 
						
							| 24 | 21 23 | nnexpcld |  |-  ( ph -> ( 2 ^ H ) e. NN ) | 
						
							| 25 | 24 | nnzd |  |-  ( ph -> ( 2 ^ H ) e. ZZ ) | 
						
							| 26 | 19 25 | zmulcld |  |-  ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ ) | 
						
							| 27 | 26 | zred |  |-  ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR ) | 
						
							| 28 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 29 | 27 28 | jca |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) | 
						
							| 31 | 1 | gausslemma2dlem0a |  |-  ( ph -> P e. NN ) | 
						
							| 32 | 31 | nnrpd |  |-  ( ph -> P e. RR+ ) | 
						
							| 33 | 19 32 | jca |  |-  ( ph -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 36 |  | modmul1 |  |-  ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) /\ ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) | 
						
							| 37 | 30 34 35 36 | syl3anc |  |-  ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) | 
						
							| 38 | 37 | ex |  |-  ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) ) | 
						
							| 39 | 19 | zcnd |  |-  ( ph -> ( -u 1 ^ N ) e. CC ) | 
						
							| 40 | 24 | nncnd |  |-  ( ph -> ( 2 ^ H ) e. CC ) | 
						
							| 41 | 39 40 39 | mul32d |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) ) | 
						
							| 42 | 17 | nn0cnd |  |-  ( ph -> N e. CC ) | 
						
							| 43 | 42 | 2timesd |  |-  ( ph -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 44 | 43 | eqcomd |  |-  ( ph -> ( N + N ) = ( 2 x. N ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( N + N ) ) = ( -u 1 ^ ( 2 x. N ) ) ) | 
						
							| 46 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 47 | 46 | a1i |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 48 | 47 17 17 | expaddd |  |-  ( ph -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) | 
						
							| 49 | 17 | nn0zd |  |-  ( ph -> N e. ZZ ) | 
						
							| 50 |  | m1expeven |  |-  ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) | 
						
							| 51 | 49 50 | syl |  |-  ( ph -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) | 
						
							| 52 | 45 48 51 | 3eqtr3d |  |-  ( ph -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) = ( 1 x. ( 2 ^ H ) ) ) | 
						
							| 54 | 40 | mullidd |  |-  ( ph -> ( 1 x. ( 2 ^ H ) ) = ( 2 ^ H ) ) | 
						
							| 55 | 41 53 54 | 3eqtrd |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( 2 ^ H ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 2 ^ H ) mod P ) ) | 
						
							| 57 | 39 | mullidd |  |-  ( ph -> ( 1 x. ( -u 1 ^ N ) ) = ( -u 1 ^ N ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ph -> ( ( 1 x. ( -u 1 ^ N ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) | 
						
							| 59 | 56 58 | eqeq12d |  |-  ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) <-> ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) | 
						
							| 60 | 2 | oveq2i |  |-  ( 2 ^ H ) = ( 2 ^ ( ( P - 1 ) / 2 ) ) | 
						
							| 61 | 60 | oveq1i |  |-  ( ( 2 ^ H ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) | 
						
							| 62 | 61 | eqeq1i |  |-  ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) | 
						
							| 63 |  | 2z |  |-  2 e. ZZ | 
						
							| 64 |  | lgsvalmod |  |-  ( ( 2 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) | 
						
							| 65 | 63 1 64 | sylancr |  |-  ( ph -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) | 
						
							| 66 | 65 | eqcomd |  |-  ( ph -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) | 
						
							| 67 | 66 | eqeq1d |  |-  ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) | 
						
							| 68 | 1 4 2 5 | gausslemma2dlem0i |  |-  ( ph -> ( ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 69 | 67 68 | sylbid |  |-  ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 70 | 62 69 | biimtrid |  |-  ( ph -> ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 71 | 59 70 | sylbid |  |-  ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 72 | 38 71 | syld |  |-  ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 73 | 15 72 | sylbid |  |-  ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) | 
						
							| 74 | 6 73 | mpd |  |-  ( ph -> ( 2 /L P ) = ( -u 1 ^ N ) ) |