| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
| 3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
| 4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
| 5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
| 6 |
1 2 3 4 5
|
gausslemma2dlem6 |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
| 7 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
| 8 |
7
|
nnnn0d |
|- ( ph -> H e. NN0 ) |
| 9 |
8
|
faccld |
|- ( ph -> ( ! ` H ) e. NN ) |
| 10 |
9
|
nncnd |
|- ( ph -> ( ! ` H ) e. CC ) |
| 11 |
10
|
mullidd |
|- ( ph -> ( 1 x. ( ! ` H ) ) = ( ! ` H ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( ! ` H ) = ( 1 x. ( ! ` H ) ) ) |
| 13 |
12
|
oveq1d |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( 1 x. ( ! ` H ) ) mod P ) ) |
| 14 |
13
|
eqeq1d |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) ) |
| 15 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 16 |
|
neg1z |
|- -u 1 e. ZZ |
| 17 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
| 18 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ N e. NN0 ) -> ( -u 1 ^ N ) e. ZZ ) |
| 19 |
16 17 18
|
sylancr |
|- ( ph -> ( -u 1 ^ N ) e. ZZ ) |
| 20 |
|
2z |
|- 2 e. ZZ |
| 21 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ H e. NN0 ) -> ( 2 ^ H ) e. ZZ ) |
| 22 |
20 8 21
|
sylancr |
|- ( ph -> ( 2 ^ H ) e. ZZ ) |
| 23 |
19 22
|
zmulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ ) |
| 24 |
9
|
nnzd |
|- ( ph -> ( ! ` H ) e. ZZ ) |
| 25 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
| 26 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 27 |
1 25 26
|
3syl |
|- ( ph -> P e. NN ) |
| 28 |
1 2
|
gausslemma2dlem0c |
|- ( ph -> ( ( ! ` H ) gcd P ) = 1 ) |
| 29 |
|
cncongrcoprm |
|- ( ( ( 1 e. ZZ /\ ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ /\ ( ! ` H ) e. ZZ ) /\ ( P e. NN /\ ( ( ! ` H ) gcd P ) = 1 ) ) -> ( ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
| 30 |
15 23 24 27 28 29
|
syl32anc |
|- ( ph -> ( ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
| 31 |
14 30
|
bitrd |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
| 32 |
|
simpr |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) |
| 33 |
26
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 34 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 35 |
33 34
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
| 36 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
| 37 |
1 25 35 36
|
4syl |
|- ( ph -> ( 1 mod P ) = 1 ) |
| 38 |
37
|
adantr |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( 1 mod P ) = 1 ) |
| 39 |
32 38
|
eqtr3d |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |
| 40 |
39
|
ex |
|- ( ph -> ( ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) ) |
| 41 |
31 40
|
sylbid |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) ) |
| 42 |
6 41
|
mpd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |