| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | gausslemma2d.r | ⊢ 𝑅  =  ( 𝑥  ∈  ( 1 ... 𝐻 )  ↦  if ( ( 𝑥  ·  2 )  <  ( 𝑃  /  2 ) ,  ( 𝑥  ·  2 ) ,  ( 𝑃  −  ( 𝑥  ·  2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 5 |  | gausslemma2d.n | ⊢ 𝑁  =  ( 𝐻  −  𝑀 ) | 
						
							| 6 | 1 2 3 4 5 | gausslemma2dlem6 | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) | 
						
							| 7 | 1 2 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) | 
						
							| 8 | 7 | nnnn0d | ⊢ ( 𝜑  →  𝐻  ∈  ℕ0 ) | 
						
							| 9 | 8 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℕ ) | 
						
							| 10 | 9 | nncnd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℂ ) | 
						
							| 11 | 10 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( ! ‘ 𝐻 ) )  =  ( ! ‘ 𝐻 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  =  ( 1  ·  ( ! ‘ 𝐻 ) ) ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( 1  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  ↔  ( ( 1  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 ) ) ) | 
						
							| 15 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 16 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 17 | 1 4 2 5 | gausslemma2dlem0h | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 |  | zexpcl | ⊢ ( ( - 1  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( - 1 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 19 | 16 17 18 | sylancr | ⊢ ( 𝜑  →  ( - 1 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 20 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 21 |  | zexpcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝐻  ∈  ℕ0 )  →  ( 2 ↑ 𝐻 )  ∈  ℤ ) | 
						
							| 22 | 20 8 21 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑ 𝐻 )  ∈  ℤ ) | 
						
							| 23 | 19 22 | zmulcld | ⊢ ( 𝜑  →  ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℤ ) | 
						
							| 24 | 9 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℤ ) | 
						
							| 25 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 26 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 27 | 1 25 26 | 3syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 28 | 1 2 | gausslemma2dlem0c | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  1 ) | 
						
							| 29 |  | cncongrcoprm | ⊢ ( ( ( 1  ∈  ℤ  ∧  ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ∈  ℤ  ∧  ( ! ‘ 𝐻 )  ∈  ℤ )  ∧  ( 𝑃  ∈  ℕ  ∧  ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  1 ) )  →  ( ( ( 1  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  ↔  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) ) ) | 
						
							| 30 | 15 23 24 27 28 29 | syl32anc | ⊢ ( 𝜑  →  ( ( ( 1  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  ↔  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) ) ) | 
						
							| 31 | 14 30 | bitrd | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  ↔  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) )  →  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) ) | 
						
							| 33 | 26 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 34 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 35 | 33 34 | jca | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 36 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 37 | 1 25 35 36 | 4syl | ⊢ ( 𝜑  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 39 | 32 38 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 ) )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1 ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝜑  →  ( ( 1  mod  𝑃 )  =  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1 ) ) | 
						
							| 41 | 31 40 | sylbid | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝐻 )  mod  𝑃 )  =  ( ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  ·  ( ! ‘ 𝐻 ) )  mod  𝑃 )  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1 ) ) | 
						
							| 42 | 6 41 | mpd | ⊢ ( 𝜑  →  ( ( ( - 1 ↑ 𝑁 )  ·  ( 2 ↑ 𝐻 ) )  mod  𝑃 )  =  1 ) |