Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0a.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
gausslemma2dlem0b.h |
⊢ 𝐻 = ( ( 𝑃 − 1 ) / 2 ) |
3 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
5 |
1 2
|
gausslemma2dlem0b |
⊢ ( 𝜑 → 𝐻 ∈ ℕ ) |
6 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝐻 ∈ ℕ0 ) |
7 |
4 6
|
jca |
⊢ ( 𝜑 → ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0 ) ) |
8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
9 |
|
nnre |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ ) |
10 |
|
peano2rem |
⊢ ( 𝑃 ∈ ℝ → ( 𝑃 − 1 ) ∈ ℝ ) |
11 |
9 10
|
syl |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) ∈ ℝ ) |
12 |
|
2re |
⊢ 2 ∈ ℝ |
13 |
12
|
a1i |
⊢ ( 𝑃 ∈ ℕ → 2 ∈ ℝ ) |
14 |
13 9
|
remulcld |
⊢ ( 𝑃 ∈ ℕ → ( 2 · 𝑃 ) ∈ ℝ ) |
15 |
9
|
ltm1d |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) < 𝑃 ) |
16 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
17 |
16
|
nn0ge0d |
⊢ ( 𝑃 ∈ ℕ → 0 ≤ 𝑃 ) |
18 |
|
1le2 |
⊢ 1 ≤ 2 |
19 |
18
|
a1i |
⊢ ( 𝑃 ∈ ℕ → 1 ≤ 2 ) |
20 |
9 13 17 19
|
lemulge12d |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ≤ ( 2 · 𝑃 ) ) |
21 |
11 9 14 15 20
|
ltletrd |
⊢ ( 𝑃 ∈ ℕ → ( 𝑃 − 1 ) < ( 2 · 𝑃 ) ) |
22 |
|
2pos |
⊢ 0 < 2 |
23 |
12 22
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
24 |
23
|
a1i |
⊢ ( 𝑃 ∈ ℕ → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
25 |
|
ltdivmul |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝑃 − 1 ) / 2 ) < 𝑃 ↔ ( 𝑃 − 1 ) < ( 2 · 𝑃 ) ) ) |
26 |
11 9 24 25
|
syl3anc |
⊢ ( 𝑃 ∈ ℕ → ( ( ( 𝑃 − 1 ) / 2 ) < 𝑃 ↔ ( 𝑃 − 1 ) < ( 2 · 𝑃 ) ) ) |
27 |
21 26
|
mpbird |
⊢ ( 𝑃 ∈ ℕ → ( ( 𝑃 − 1 ) / 2 ) < 𝑃 ) |
28 |
3 8 27
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) < 𝑃 ) |
29 |
1 28
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 − 1 ) / 2 ) < 𝑃 ) |
30 |
2 29
|
eqbrtrid |
⊢ ( 𝜑 → 𝐻 < 𝑃 ) |
31 |
|
prmndvdsfaclt |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0 ) → ( 𝐻 < 𝑃 → ¬ 𝑃 ∥ ( ! ‘ 𝐻 ) ) ) |
32 |
7 30 31
|
sylc |
⊢ ( 𝜑 → ¬ 𝑃 ∥ ( ! ‘ 𝐻 ) ) |
33 |
6
|
faccld |
⊢ ( 𝜑 → ( ! ‘ 𝐻 ) ∈ ℕ ) |
34 |
33
|
nnzd |
⊢ ( 𝜑 → ( ! ‘ 𝐻 ) ∈ ℤ ) |
35 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
36 |
3 8 35
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ ) |
37 |
1 36
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
38 |
34 37
|
gcdcomd |
⊢ ( 𝜑 → ( ( ! ‘ 𝐻 ) gcd 𝑃 ) = ( 𝑃 gcd ( ! ‘ 𝐻 ) ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝐻 ) gcd 𝑃 ) = 1 ↔ ( 𝑃 gcd ( ! ‘ 𝐻 ) ) = 1 ) ) |
40 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ! ‘ 𝐻 ) ∈ ℤ ) → ( ¬ 𝑃 ∥ ( ! ‘ 𝐻 ) ↔ ( 𝑃 gcd ( ! ‘ 𝐻 ) ) = 1 ) ) |
41 |
4 34 40
|
syl2anc |
⊢ ( 𝜑 → ( ¬ 𝑃 ∥ ( ! ‘ 𝐻 ) ↔ ( 𝑃 gcd ( ! ‘ 𝐻 ) ) = 1 ) ) |
42 |
39 41
|
bitr4d |
⊢ ( 𝜑 → ( ( ( ! ‘ 𝐻 ) gcd 𝑃 ) = 1 ↔ ¬ 𝑃 ∥ ( ! ‘ 𝐻 ) ) ) |
43 |
32 42
|
mpbird |
⊢ ( 𝜑 → ( ( ! ‘ 𝐻 ) gcd 𝑃 ) = 1 ) |