| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0a.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0b.h | ⊢ 𝐻  =  ( ( 𝑃  −  1 )  /  2 ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 5 | 1 2 | gausslemma2dlem0b | ⊢ ( 𝜑  →  𝐻  ∈  ℕ ) | 
						
							| 6 | 5 | nnnn0d | ⊢ ( 𝜑  →  𝐻  ∈  ℕ0 ) | 
						
							| 7 | 4 6 | jca | ⊢ ( 𝜑  →  ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ℕ0 ) ) | 
						
							| 8 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 9 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 10 |  | peano2rem | ⊢ ( 𝑃  ∈  ℝ  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  ∈  ℝ ) | 
						
							| 12 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 14 | 13 9 | remulcld | ⊢ ( 𝑃  ∈  ℕ  →  ( 2  ·  𝑃 )  ∈  ℝ ) | 
						
							| 15 | 9 | ltm1d | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  <  𝑃 ) | 
						
							| 16 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0ge0d | ⊢ ( 𝑃  ∈  ℕ  →  0  ≤  𝑃 ) | 
						
							| 18 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  1  ≤  2 ) | 
						
							| 20 | 9 13 17 19 | lemulge12d | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ≤  ( 2  ·  𝑃 ) ) | 
						
							| 21 | 11 9 14 15 20 | ltletrd | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  −  1 )  <  ( 2  ·  𝑃 ) ) | 
						
							| 22 |  | 2pos | ⊢ 0  <  2 | 
						
							| 23 | 12 22 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 25 |  | ltdivmul | ⊢ ( ( ( 𝑃  −  1 )  ∈  ℝ  ∧  𝑃  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( ( 𝑃  −  1 )  /  2 )  <  𝑃  ↔  ( 𝑃  −  1 )  <  ( 2  ·  𝑃 ) ) ) | 
						
							| 26 | 11 9 24 25 | syl3anc | ⊢ ( 𝑃  ∈  ℕ  →  ( ( ( 𝑃  −  1 )  /  2 )  <  𝑃  ↔  ( 𝑃  −  1 )  <  ( 2  ·  𝑃 ) ) ) | 
						
							| 27 | 21 26 | mpbird | ⊢ ( 𝑃  ∈  ℕ  →  ( ( 𝑃  −  1 )  /  2 )  <  𝑃 ) | 
						
							| 28 | 1 3 8 27 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  <  𝑃 ) | 
						
							| 29 | 2 28 | eqbrtrid | ⊢ ( 𝜑  →  𝐻  <  𝑃 ) | 
						
							| 30 |  | prmndvdsfaclt | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐻  ∈  ℕ0 )  →  ( 𝐻  <  𝑃  →  ¬  𝑃  ∥  ( ! ‘ 𝐻 ) ) ) | 
						
							| 31 | 7 29 30 | sylc | ⊢ ( 𝜑  →  ¬  𝑃  ∥  ( ! ‘ 𝐻 ) ) | 
						
							| 32 | 6 | faccld | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℕ ) | 
						
							| 33 | 32 | nnzd | ⊢ ( 𝜑  →  ( ! ‘ 𝐻 )  ∈  ℤ ) | 
						
							| 34 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 35 | 1 3 8 34 | 4syl | ⊢ ( 𝜑  →  𝑃  ∈  ℤ ) | 
						
							| 36 | 33 35 | gcdcomd | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  ( 𝑃  gcd  ( ! ‘ 𝐻 ) ) ) | 
						
							| 37 | 36 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  1  ↔  ( 𝑃  gcd  ( ! ‘ 𝐻 ) )  =  1 ) ) | 
						
							| 38 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ! ‘ 𝐻 )  ∈  ℤ )  →  ( ¬  𝑃  ∥  ( ! ‘ 𝐻 )  ↔  ( 𝑃  gcd  ( ! ‘ 𝐻 ) )  =  1 ) ) | 
						
							| 39 | 4 33 38 | syl2anc | ⊢ ( 𝜑  →  ( ¬  𝑃  ∥  ( ! ‘ 𝐻 )  ↔  ( 𝑃  gcd  ( ! ‘ 𝐻 ) )  =  1 ) ) | 
						
							| 40 | 37 39 | bitr4d | ⊢ ( 𝜑  →  ( ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  1  ↔  ¬  𝑃  ∥  ( ! ‘ 𝐻 ) ) ) | 
						
							| 41 | 31 40 | mpbird | ⊢ ( 𝜑  →  ( ( ! ‘ 𝐻 )  gcd  𝑃 )  =  1 ) |