| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0a.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0b.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 3 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 4 | 1 3 | syl |  |-  ( ph -> P e. Prime ) | 
						
							| 5 | 1 2 | gausslemma2dlem0b |  |-  ( ph -> H e. NN ) | 
						
							| 6 | 5 | nnnn0d |  |-  ( ph -> H e. NN0 ) | 
						
							| 7 | 4 6 | jca |  |-  ( ph -> ( P e. Prime /\ H e. NN0 ) ) | 
						
							| 8 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 9 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 10 |  | peano2rem |  |-  ( P e. RR -> ( P - 1 ) e. RR ) | 
						
							| 11 | 9 10 | syl |  |-  ( P e. NN -> ( P - 1 ) e. RR ) | 
						
							| 12 |  | 2re |  |-  2 e. RR | 
						
							| 13 | 12 | a1i |  |-  ( P e. NN -> 2 e. RR ) | 
						
							| 14 | 13 9 | remulcld |  |-  ( P e. NN -> ( 2 x. P ) e. RR ) | 
						
							| 15 | 9 | ltm1d |  |-  ( P e. NN -> ( P - 1 ) < P ) | 
						
							| 16 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 17 | 16 | nn0ge0d |  |-  ( P e. NN -> 0 <_ P ) | 
						
							| 18 |  | 1le2 |  |-  1 <_ 2 | 
						
							| 19 | 18 | a1i |  |-  ( P e. NN -> 1 <_ 2 ) | 
						
							| 20 | 9 13 17 19 | lemulge12d |  |-  ( P e. NN -> P <_ ( 2 x. P ) ) | 
						
							| 21 | 11 9 14 15 20 | ltletrd |  |-  ( P e. NN -> ( P - 1 ) < ( 2 x. P ) ) | 
						
							| 22 |  | 2pos |  |-  0 < 2 | 
						
							| 23 | 12 22 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 24 | 23 | a1i |  |-  ( P e. NN -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 25 |  | ltdivmul |  |-  ( ( ( P - 1 ) e. RR /\ P e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( P - 1 ) / 2 ) < P <-> ( P - 1 ) < ( 2 x. P ) ) ) | 
						
							| 26 | 11 9 24 25 | syl3anc |  |-  ( P e. NN -> ( ( ( P - 1 ) / 2 ) < P <-> ( P - 1 ) < ( 2 x. P ) ) ) | 
						
							| 27 | 21 26 | mpbird |  |-  ( P e. NN -> ( ( P - 1 ) / 2 ) < P ) | 
						
							| 28 | 1 3 8 27 | 4syl |  |-  ( ph -> ( ( P - 1 ) / 2 ) < P ) | 
						
							| 29 | 2 28 | eqbrtrid |  |-  ( ph -> H < P ) | 
						
							| 30 |  | prmndvdsfaclt |  |-  ( ( P e. Prime /\ H e. NN0 ) -> ( H < P -> -. P || ( ! ` H ) ) ) | 
						
							| 31 | 7 29 30 | sylc |  |-  ( ph -> -. P || ( ! ` H ) ) | 
						
							| 32 | 6 | faccld |  |-  ( ph -> ( ! ` H ) e. NN ) | 
						
							| 33 | 32 | nnzd |  |-  ( ph -> ( ! ` H ) e. ZZ ) | 
						
							| 34 |  | nnz |  |-  ( P e. NN -> P e. ZZ ) | 
						
							| 35 | 1 3 8 34 | 4syl |  |-  ( ph -> P e. ZZ ) | 
						
							| 36 | 33 35 | gcdcomd |  |-  ( ph -> ( ( ! ` H ) gcd P ) = ( P gcd ( ! ` H ) ) ) | 
						
							| 37 | 36 | eqeq1d |  |-  ( ph -> ( ( ( ! ` H ) gcd P ) = 1 <-> ( P gcd ( ! ` H ) ) = 1 ) ) | 
						
							| 38 |  | coprm |  |-  ( ( P e. Prime /\ ( ! ` H ) e. ZZ ) -> ( -. P || ( ! ` H ) <-> ( P gcd ( ! ` H ) ) = 1 ) ) | 
						
							| 39 | 4 33 38 | syl2anc |  |-  ( ph -> ( -. P || ( ! ` H ) <-> ( P gcd ( ! ` H ) ) = 1 ) ) | 
						
							| 40 | 37 39 | bitr4d |  |-  ( ph -> ( ( ( ! ` H ) gcd P ) = 1 <-> -. P || ( ! ` H ) ) ) | 
						
							| 41 | 31 40 | mpbird |  |-  ( ph -> ( ( ! ` H ) gcd P ) = 1 ) |