Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0a.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2dlem0b.h |
|- H = ( ( P - 1 ) / 2 ) |
3 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
4 |
1 3
|
syl |
|- ( ph -> P e. Prime ) |
5 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
6 |
5
|
nnnn0d |
|- ( ph -> H e. NN0 ) |
7 |
4 6
|
jca |
|- ( ph -> ( P e. Prime /\ H e. NN0 ) ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
|
nnre |
|- ( P e. NN -> P e. RR ) |
10 |
|
peano2rem |
|- ( P e. RR -> ( P - 1 ) e. RR ) |
11 |
9 10
|
syl |
|- ( P e. NN -> ( P - 1 ) e. RR ) |
12 |
|
2re |
|- 2 e. RR |
13 |
12
|
a1i |
|- ( P e. NN -> 2 e. RR ) |
14 |
13 9
|
remulcld |
|- ( P e. NN -> ( 2 x. P ) e. RR ) |
15 |
9
|
ltm1d |
|- ( P e. NN -> ( P - 1 ) < P ) |
16 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
17 |
16
|
nn0ge0d |
|- ( P e. NN -> 0 <_ P ) |
18 |
|
1le2 |
|- 1 <_ 2 |
19 |
18
|
a1i |
|- ( P e. NN -> 1 <_ 2 ) |
20 |
9 13 17 19
|
lemulge12d |
|- ( P e. NN -> P <_ ( 2 x. P ) ) |
21 |
11 9 14 15 20
|
ltletrd |
|- ( P e. NN -> ( P - 1 ) < ( 2 x. P ) ) |
22 |
|
2pos |
|- 0 < 2 |
23 |
12 22
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
24 |
23
|
a1i |
|- ( P e. NN -> ( 2 e. RR /\ 0 < 2 ) ) |
25 |
|
ltdivmul |
|- ( ( ( P - 1 ) e. RR /\ P e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( P - 1 ) / 2 ) < P <-> ( P - 1 ) < ( 2 x. P ) ) ) |
26 |
11 9 24 25
|
syl3anc |
|- ( P e. NN -> ( ( ( P - 1 ) / 2 ) < P <-> ( P - 1 ) < ( 2 x. P ) ) ) |
27 |
21 26
|
mpbird |
|- ( P e. NN -> ( ( P - 1 ) / 2 ) < P ) |
28 |
3 8 27
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P - 1 ) / 2 ) < P ) |
29 |
1 28
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) < P ) |
30 |
2 29
|
eqbrtrid |
|- ( ph -> H < P ) |
31 |
|
prmndvdsfaclt |
|- ( ( P e. Prime /\ H e. NN0 ) -> ( H < P -> -. P || ( ! ` H ) ) ) |
32 |
7 30 31
|
sylc |
|- ( ph -> -. P || ( ! ` H ) ) |
33 |
6
|
faccld |
|- ( ph -> ( ! ` H ) e. NN ) |
34 |
33
|
nnzd |
|- ( ph -> ( ! ` H ) e. ZZ ) |
35 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
36 |
3 8 35
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
37 |
1 36
|
syl |
|- ( ph -> P e. ZZ ) |
38 |
34 37
|
gcdcomd |
|- ( ph -> ( ( ! ` H ) gcd P ) = ( P gcd ( ! ` H ) ) ) |
39 |
38
|
eqeq1d |
|- ( ph -> ( ( ( ! ` H ) gcd P ) = 1 <-> ( P gcd ( ! ` H ) ) = 1 ) ) |
40 |
|
coprm |
|- ( ( P e. Prime /\ ( ! ` H ) e. ZZ ) -> ( -. P || ( ! ` H ) <-> ( P gcd ( ! ` H ) ) = 1 ) ) |
41 |
4 34 40
|
syl2anc |
|- ( ph -> ( -. P || ( ! ` H ) <-> ( P gcd ( ! ` H ) ) = 1 ) ) |
42 |
39 41
|
bitr4d |
|- ( ph -> ( ( ( ! ` H ) gcd P ) = 1 <-> -. P || ( ! ` H ) ) ) |
43 |
32 42
|
mpbird |
|- ( ph -> ( ( ! ` H ) gcd P ) = 1 ) |