| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 3 | 1 | gausslemma2dlem0a |  |-  ( ph -> P e. NN ) | 
						
							| 4 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 5 |  | 4re |  |-  4 e. RR | 
						
							| 6 | 5 | a1i |  |-  ( P e. NN -> 4 e. RR ) | 
						
							| 7 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 8 | 7 | a1i |  |-  ( P e. NN -> 4 =/= 0 ) | 
						
							| 9 | 4 6 8 | redivcld |  |-  ( P e. NN -> ( P / 4 ) e. RR ) | 
						
							| 10 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 11 | 10 | nn0ge0d |  |-  ( P e. NN -> 0 <_ P ) | 
						
							| 12 |  | 4pos |  |-  0 < 4 | 
						
							| 13 | 5 12 | pm3.2i |  |-  ( 4 e. RR /\ 0 < 4 ) | 
						
							| 14 | 13 | a1i |  |-  ( P e. NN -> ( 4 e. RR /\ 0 < 4 ) ) | 
						
							| 15 |  | divge0 |  |-  ( ( ( P e. RR /\ 0 <_ P ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( P / 4 ) ) | 
						
							| 16 | 4 11 14 15 | syl21anc |  |-  ( P e. NN -> 0 <_ ( P / 4 ) ) | 
						
							| 17 | 9 16 | jca |  |-  ( P e. NN -> ( ( P / 4 ) e. RR /\ 0 <_ ( P / 4 ) ) ) | 
						
							| 18 |  | flge0nn0 |  |-  ( ( ( P / 4 ) e. RR /\ 0 <_ ( P / 4 ) ) -> ( |_ ` ( P / 4 ) ) e. NN0 ) | 
						
							| 19 | 3 17 18 | 3syl |  |-  ( ph -> ( |_ ` ( P / 4 ) ) e. NN0 ) | 
						
							| 20 | 2 19 | eqeltrid |  |-  ( ph -> M e. NN0 ) |