Metamath Proof Explorer


Theorem gausslemma2dlem0d

Description: Auxiliary lemma 4 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p φP2
gausslemma2dlem0.m M=P4
Assertion gausslemma2dlem0d φM0

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p φP2
2 gausslemma2dlem0.m M=P4
3 1 gausslemma2dlem0a φP
4 nnre PP
5 4re 4
6 5 a1i P4
7 4ne0 40
8 7 a1i P40
9 4 6 8 redivcld PP4
10 nnnn0 PP0
11 10 nn0ge0d P0P
12 4pos 0<4
13 5 12 pm3.2i 40<4
14 13 a1i P40<4
15 divge0 P0P40<40P4
16 4 11 14 15 syl21anc P0P4
17 9 16 jca PP40P4
18 flge0nn0 P40P4P40
19 3 17 18 3syl φP40
20 2 19 eqeltrid φM0