| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 3 | 1 | gausslemma2dlem0a | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 4 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 5 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  4  ∈  ℝ ) | 
						
							| 7 |  | 4ne0 | ⊢ 4  ≠  0 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  4  ≠  0 ) | 
						
							| 9 | 4 6 8 | redivcld | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  /  4 )  ∈  ℝ ) | 
						
							| 10 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0ge0d | ⊢ ( 𝑃  ∈  ℕ  →  0  ≤  𝑃 ) | 
						
							| 12 |  | 4pos | ⊢ 0  <  4 | 
						
							| 13 | 5 12 | pm3.2i | ⊢ ( 4  ∈  ℝ  ∧  0  <  4 ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑃  ∈  ℕ  →  ( 4  ∈  ℝ  ∧  0  <  4 ) ) | 
						
							| 15 |  | divge0 | ⊢ ( ( ( 𝑃  ∈  ℝ  ∧  0  ≤  𝑃 )  ∧  ( 4  ∈  ℝ  ∧  0  <  4 ) )  →  0  ≤  ( 𝑃  /  4 ) ) | 
						
							| 16 | 4 11 14 15 | syl21anc | ⊢ ( 𝑃  ∈  ℕ  →  0  ≤  ( 𝑃  /  4 ) ) | 
						
							| 17 | 9 16 | jca | ⊢ ( 𝑃  ∈  ℕ  →  ( ( 𝑃  /  4 )  ∈  ℝ  ∧  0  ≤  ( 𝑃  /  4 ) ) ) | 
						
							| 18 |  | flge0nn0 | ⊢ ( ( ( 𝑃  /  4 )  ∈  ℝ  ∧  0  ≤  ( 𝑃  /  4 ) )  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ0 ) | 
						
							| 19 | 3 17 18 | 3syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑃  /  4 ) )  ∈  ℕ0 ) | 
						
							| 20 | 2 19 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) |