| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0.p | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0.m | ⊢ 𝑀  =  ( ⌊ ‘ ( 𝑃  /  4 ) ) | 
						
							| 3 | 2 | oveq1i | ⊢ ( 𝑀  ·  2 )  =  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ·  2 ) | 
						
							| 4 |  | nnoddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 5 |  | nnz | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℤ ) | 
						
							| 6 | 5 | anim1i | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ¬  2  ∥  𝑃 )  →  ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 ) ) | 
						
							| 7 |  | flodddiv4t2lthalf | ⊢ ( ( 𝑃  ∈  ℤ  ∧  ¬  2  ∥  𝑃 )  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 8 | 1 4 6 7 | 4syl | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝑃  /  4 ) )  ·  2 )  <  ( 𝑃  /  2 ) ) | 
						
							| 9 | 3 8 | eqbrtrid | ⊢ ( 𝜑  →  ( 𝑀  ·  2 )  <  ( 𝑃  /  2 ) ) |