Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0.p |
⊢ ( 𝜑 → 𝑃 ∈ ( ℙ ∖ { 2 } ) ) |
2 |
|
gausslemma2dlem0.m |
⊢ 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) ) |
3 |
2
|
oveq1i |
⊢ ( 𝑀 · 2 ) = ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 ) |
4 |
|
nnoddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) ) |
5 |
|
nnz |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ ) |
6 |
5
|
anim1i |
⊢ ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) ) |
7 |
1 4 6
|
3syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) ) |
8 |
|
flodddiv4t2lthalf |
⊢ ( ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 ) < ( 𝑃 / 2 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 ) < ( 𝑃 / 2 ) ) |
10 |
3 9
|
eqbrtrid |
⊢ ( 𝜑 → ( 𝑀 · 2 ) < ( 𝑃 / 2 ) ) |