Metamath Proof Explorer


Theorem gausslemma2dlem0e

Description: Auxiliary lemma 5 for gausslemma2d . (Contributed by AV, 9-Jul-2021)

Ref Expression
Hypotheses gausslemma2dlem0.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
gausslemma2dlem0.m 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) )
Assertion gausslemma2dlem0e ( 𝜑 → ( 𝑀 · 2 ) < ( 𝑃 / 2 ) )

Proof

Step Hyp Ref Expression
1 gausslemma2dlem0.p ( 𝜑𝑃 ∈ ( ℙ ∖ { 2 } ) )
2 gausslemma2dlem0.m 𝑀 = ( ⌊ ‘ ( 𝑃 / 4 ) )
3 2 oveq1i ( 𝑀 · 2 ) = ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 )
4 nnoddn2prm ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) )
5 nnz ( 𝑃 ∈ ℕ → 𝑃 ∈ ℤ )
6 5 anim1i ( ( 𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃 ) → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) )
7 1 4 6 3syl ( 𝜑 → ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) )
8 flodddiv4t2lthalf ( ( 𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃 ) → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 ) < ( 𝑃 / 2 ) )
9 7 8 syl ( 𝜑 → ( ( ⌊ ‘ ( 𝑃 / 4 ) ) · 2 ) < ( 𝑃 / 2 ) )
10 3 9 eqbrtrid ( 𝜑 → ( 𝑀 · 2 ) < ( 𝑃 / 2 ) )