| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2dlem0.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2dlem0.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 3 | 2 | oveq1i |  |-  ( M x. 2 ) = ( ( |_ ` ( P / 4 ) ) x. 2 ) | 
						
							| 4 |  | nnoddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) | 
						
							| 5 |  | nnz |  |-  ( P e. NN -> P e. ZZ ) | 
						
							| 6 | 5 | anim1i |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( P e. ZZ /\ -. 2 || P ) ) | 
						
							| 7 |  | flodddiv4t2lthalf |  |-  ( ( P e. ZZ /\ -. 2 || P ) -> ( ( |_ ` ( P / 4 ) ) x. 2 ) < ( P / 2 ) ) | 
						
							| 8 | 1 4 6 7 | 4syl |  |-  ( ph -> ( ( |_ ` ( P / 4 ) ) x. 2 ) < ( P / 2 ) ) | 
						
							| 9 | 3 8 | eqbrtrid |  |-  ( ph -> ( M x. 2 ) < ( P / 2 ) ) |