| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifi |  |-  ( N e. ( Prime \ { 2 } ) -> N e. Prime ) | 
						
							| 2 |  | prmnn |  |-  ( N e. Prime -> N e. NN ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. ( Prime \ { 2 } ) -> N e. NN ) | 
						
							| 4 |  | oddprm |  |-  ( N e. ( Prime \ { 2 } ) -> ( ( N - 1 ) / 2 ) e. NN ) | 
						
							| 5 |  | nnz |  |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 6 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 7 |  | oddm1d2 |  |-  ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( N e. NN -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 9 | 5 8 | syl5ibrcom |  |-  ( ( ( N - 1 ) / 2 ) e. NN -> ( N e. NN -> -. 2 || N ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( N e. ( Prime \ { 2 } ) -> ( N e. NN -> -. 2 || N ) ) | 
						
							| 11 | 3 10 | jcai |  |-  ( N e. ( Prime \ { 2 } ) -> ( N e. NN /\ -. 2 || N ) ) |