Metamath Proof Explorer


Theorem oddm1d2

Description: An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021) (Proof shortened by AV, 22-Jun-2021)

Ref Expression
Assertion oddm1d2
|- ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) )

Proof

Step Hyp Ref Expression
1 oddp1d2
 |-  ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) )
2 zob
 |-  ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N - 1 ) / 2 ) e. ZZ ) )
3 1 2 bitrd
 |-  ( N e. ZZ -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. ZZ ) )