Metamath Proof Explorer
Table of Contents - 15.4.16. Geometry in Euclidean spaces
- Definition of the Euclidean space
- cee
- cbtwn
- ccgr
- df-ee
- df-btwn
- df-cgr
- elee
- mptelee
- eleenn
- eleei
- eedimeq
- brbtwn
- brcgr
- fveere
- fveecn
- eqeefv
- eqeelen
- brbtwn2
- colinearalglem1
- colinearalglem2
- colinearalglem3
- colinearalglem4
- colinearalg
- eleesub
- eleesubd
- Tarski's axioms for geometry for the Euclidean space
- axdimuniq
- axcgrrflx
- axcgrtr
- axcgrid
- axsegconlem1
- axsegconlem2
- axsegconlem3
- axsegconlem4
- axsegconlem5
- axsegconlem6
- axsegconlem7
- axsegconlem8
- axsegconlem9
- axsegconlem10
- axsegcon
- ax5seglem1
- ax5seglem2
- ax5seglem3a
- ax5seglem3
- ax5seglem4
- ax5seglem5
- ax5seglem6
- ax5seglem7
- ax5seglem8
- ax5seglem9
- ax5seg
- axbtwnid
- axpaschlem
- axpasch
- axlowdimlem1
- axlowdimlem2
- axlowdimlem3
- axlowdimlem4
- axlowdimlem5
- axlowdimlem6
- axlowdimlem7
- axlowdimlem8
- axlowdimlem9
- axlowdimlem10
- axlowdimlem11
- axlowdimlem12
- axlowdimlem13
- axlowdimlem14
- axlowdimlem15
- axlowdimlem16
- axlowdimlem17
- axlowdim1
- axlowdim2
- axlowdim
- axeuclidlem
- axeuclid
- axcontlem1
- axcontlem2
- axcontlem3
- axcontlem4
- axcontlem5
- axcontlem6
- axcontlem7
- axcontlem8
- axcontlem9
- axcontlem10
- axcontlem11
- axcontlem12
- axcont
- EE^n fulfills Tarski's Axioms
- ceeng
- df-eeng
- eengv
- eengstr
- eengbas
- ebtwntg
- ecgrtg
- elntg
- elntg2
- eengtrkg
- eengtrkge