Metamath Proof Explorer


Theorem ecgrtg

Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr . (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses ecgrtg.1 φN
ecgrtg.2 P=Base𝔼𝒢N
ecgrtg.3 -˙=dist𝔼𝒢N
ecgrtg.a φAP
ecgrtg.b φBP
ecgrtg.c φCP
ecgrtg.d φDP
Assertion ecgrtg φABCgrCDA-˙B=C-˙D

Proof

Step Hyp Ref Expression
1 ecgrtg.1 φN
2 ecgrtg.2 P=Base𝔼𝒢N
3 ecgrtg.3 -˙=dist𝔼𝒢N
4 ecgrtg.a φAP
5 ecgrtg.b φBP
6 ecgrtg.c φCP
7 ecgrtg.d φDP
8 eengbas N𝔼N=Base𝔼𝒢N
9 1 8 syl φ𝔼N=Base𝔼𝒢N
10 9 2 eqtr4di φ𝔼N=P
11 4 10 eleqtrrd φA𝔼N
12 5 10 eleqtrrd φB𝔼N
13 6 10 eleqtrrd φC𝔼N
14 7 10 eleqtrrd φD𝔼N
15 brcgr A𝔼NB𝔼NC𝔼ND𝔼NABCgrCDi=1NAiBi2=i=1NCiDi2
16 11 12 13 14 15 syl22anc φABCgrCDi=1NAiBi2=i=1NCiDi2
17 dsid dist=Slotdistndx
18 fvexd φ𝔼𝒢NV
19 eengstr N𝔼𝒢NStruct117
20 1 19 syl φ𝔼𝒢NStruct117
21 structn0fun 𝔼𝒢NStruct117Fun𝔼𝒢N
22 20 21 syl φFun𝔼𝒢N
23 structcnvcnv 𝔼𝒢NStruct117𝔼𝒢N-1-1=𝔼𝒢N
24 20 23 syl φ𝔼𝒢N-1-1=𝔼𝒢N
25 24 funeqd φFun𝔼𝒢N-1-1Fun𝔼𝒢N
26 22 25 mpbird φFun𝔼𝒢N-1-1
27 opex distndxx𝔼N,y𝔼Ni=1Nxiyi2V
28 27 prid2 distndxx𝔼N,y𝔼Ni=1Nxiyi2Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2
29 elun1 distndxx𝔼N,y𝔼Ni=1Nxiyi2Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2distndxx𝔼N,y𝔼Ni=1Nxiyi2Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
30 28 29 ax-mp distndxx𝔼N,y𝔼Ni=1Nxiyi2Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
31 eengv N𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
32 1 31 syl φ𝔼𝒢N=Basendx𝔼Ndistndxx𝔼N,y𝔼Ni=1Nxiyi2Itvndxx𝔼N,y𝔼Nz𝔼N|zBtwnxyLine𝒢ndxx𝔼N,y𝔼Nxz𝔼N|zBtwnxyxBtwnzyyBtwnxz
33 30 32 eleqtrrid φdistndxx𝔼N,y𝔼Ni=1Nxiyi2𝔼𝒢N
34 fvex 𝔼NV
35 34 34 mpoex x𝔼N,y𝔼Ni=1Nxiyi2V
36 35 a1i φx𝔼N,y𝔼Ni=1Nxiyi2V
37 17 18 26 33 36 strfv2d φx𝔼N,y𝔼Ni=1Nxiyi2=dist𝔼𝒢N
38 3 37 eqtr4id φ-˙=x𝔼N,y𝔼Ni=1Nxiyi2
39 simplrl φx=Ay=Bi1Nx=A
40 39 fveq1d φx=Ay=Bi1Nxi=Ai
41 simplrr φx=Ay=Bi1Ny=B
42 41 fveq1d φx=Ay=Bi1Nyi=Bi
43 40 42 oveq12d φx=Ay=Bi1Nxiyi=AiBi
44 43 oveq1d φx=Ay=Bi1Nxiyi2=AiBi2
45 44 sumeq2dv φx=Ay=Bi=1Nxiyi2=i=1NAiBi2
46 sumex i=1NAiBi2V
47 46 a1i φi=1NAiBi2V
48 38 45 11 12 47 ovmpod φA-˙B=i=1NAiBi2
49 48 eqcomd φi=1NAiBi2=A-˙B
50 simplrl φx=Cy=Di1Nx=C
51 50 fveq1d φx=Cy=Di1Nxi=Ci
52 simplrr φx=Cy=Di1Ny=D
53 52 fveq1d φx=Cy=Di1Nyi=Di
54 51 53 oveq12d φx=Cy=Di1Nxiyi=CiDi
55 54 oveq1d φx=Cy=Di1Nxiyi2=CiDi2
56 55 sumeq2dv φx=Cy=Di=1Nxiyi2=i=1NCiDi2
57 sumex i=1NCiDi2V
58 57 a1i φi=1NCiDi2V
59 38 56 13 14 58 ovmpod φC-˙D=i=1NCiDi2
60 59 eqcomd φi=1NCiDi2=C-˙D
61 49 60 eqeq12d φi=1NAiBi2=i=1NCiDi2A-˙B=C-˙D
62 16 61 bitrd φABCgrCDA-˙B=C-˙D