Metamath Proof Explorer


Theorem ecgrtg

Description: The congruence relation used in the Tarski structure for the Euclidean geometry is the same as Cgr . (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Hypotheses ecgrtg.1 φ N
ecgrtg.2 P = Base 𝔼 𝒢 N
ecgrtg.3 - ˙ = dist 𝔼 𝒢 N
ecgrtg.a φ A P
ecgrtg.b φ B P
ecgrtg.c φ C P
ecgrtg.d φ D P
Assertion ecgrtg φ A B Cgr C D A - ˙ B = C - ˙ D

Proof

Step Hyp Ref Expression
1 ecgrtg.1 φ N
2 ecgrtg.2 P = Base 𝔼 𝒢 N
3 ecgrtg.3 - ˙ = dist 𝔼 𝒢 N
4 ecgrtg.a φ A P
5 ecgrtg.b φ B P
6 ecgrtg.c φ C P
7 ecgrtg.d φ D P
8 eengbas N 𝔼 N = Base 𝔼 𝒢 N
9 1 8 syl φ 𝔼 N = Base 𝔼 𝒢 N
10 9 2 eqtr4di φ 𝔼 N = P
11 4 10 eleqtrrd φ A 𝔼 N
12 5 10 eleqtrrd φ B 𝔼 N
13 6 10 eleqtrrd φ C 𝔼 N
14 7 10 eleqtrrd φ D 𝔼 N
15 brcgr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2
16 11 12 13 14 15 syl22anc φ A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2
17 dsid dist = Slot dist ndx
18 fvexd φ 𝔼 𝒢 N V
19 eengstr N 𝔼 𝒢 N Struct 1 17
20 1 19 syl φ 𝔼 𝒢 N Struct 1 17
21 structn0fun 𝔼 𝒢 N Struct 1 17 Fun 𝔼 𝒢 N
22 20 21 syl φ Fun 𝔼 𝒢 N
23 structcnvcnv 𝔼 𝒢 N Struct 1 17 𝔼 𝒢 N -1 -1 = 𝔼 𝒢 N
24 20 23 syl φ 𝔼 𝒢 N -1 -1 = 𝔼 𝒢 N
25 24 funeqd φ Fun 𝔼 𝒢 N -1 -1 Fun 𝔼 𝒢 N
26 22 25 mpbird φ Fun 𝔼 𝒢 N -1 -1
27 opex dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 V
28 27 prid2 dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
29 elun1 dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
30 28 29 ax-mp dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
31 eengv N 𝔼 𝒢 N = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
32 1 31 syl φ 𝔼 𝒢 N = Base ndx 𝔼 N dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 Itv ndx x 𝔼 N , y 𝔼 N z 𝔼 N | z Btwn x y Line 𝒢 ndx x 𝔼 N , y 𝔼 N x z 𝔼 N | z Btwn x y x Btwn z y y Btwn x z
33 30 32 eleqtrrid φ dist ndx x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 𝔼 𝒢 N
34 fvex 𝔼 N V
35 34 34 mpoex x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 V
36 35 a1i φ x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 V
37 17 18 26 33 36 strfv2d φ x 𝔼 N , y 𝔼 N i = 1 N x i y i 2 = dist 𝔼 𝒢 N
38 3 37 eqtr4id φ - ˙ = x 𝔼 N , y 𝔼 N i = 1 N x i y i 2
39 simplrl φ x = A y = B i 1 N x = A
40 39 fveq1d φ x = A y = B i 1 N x i = A i
41 simplrr φ x = A y = B i 1 N y = B
42 41 fveq1d φ x = A y = B i 1 N y i = B i
43 40 42 oveq12d φ x = A y = B i 1 N x i y i = A i B i
44 43 oveq1d φ x = A y = B i 1 N x i y i 2 = A i B i 2
45 44 sumeq2dv φ x = A y = B i = 1 N x i y i 2 = i = 1 N A i B i 2
46 sumex i = 1 N A i B i 2 V
47 46 a1i φ i = 1 N A i B i 2 V
48 38 45 11 12 47 ovmpod φ A - ˙ B = i = 1 N A i B i 2
49 48 eqcomd φ i = 1 N A i B i 2 = A - ˙ B
50 simplrl φ x = C y = D i 1 N x = C
51 50 fveq1d φ x = C y = D i 1 N x i = C i
52 simplrr φ x = C y = D i 1 N y = D
53 52 fveq1d φ x = C y = D i 1 N y i = D i
54 51 53 oveq12d φ x = C y = D i 1 N x i y i = C i D i
55 54 oveq1d φ x = C y = D i 1 N x i y i 2 = C i D i 2
56 55 sumeq2dv φ x = C y = D i = 1 N x i y i 2 = i = 1 N C i D i 2
57 sumex i = 1 N C i D i 2 V
58 57 a1i φ i = 1 N C i D i 2 V
59 38 56 13 14 58 ovmpod φ C - ˙ D = i = 1 N C i D i 2
60 59 eqcomd φ i = 1 N C i D i 2 = C - ˙ D
61 49 60 eqeq12d φ i = 1 N A i B i 2 = i = 1 N C i D i 2 A - ˙ B = C - ˙ D
62 16 61 bitrd φ A B Cgr C D A - ˙ B = C - ˙ D