| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ecgrtg.1 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | ecgrtg.2 | ⊢ 𝑃  =  ( Base ‘ ( EEG ‘ 𝑁 ) ) | 
						
							| 3 |  | ecgrtg.3 | ⊢  −   =  ( dist ‘ ( EEG ‘ 𝑁 ) ) | 
						
							| 4 |  | ecgrtg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ecgrtg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ecgrtg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | ecgrtg.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 8 |  | eengbas | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝔼 ‘ 𝑁 )  =  ( Base ‘ ( EEG ‘ 𝑁 ) ) ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ( 𝔼 ‘ 𝑁 )  =  ( Base ‘ ( EEG ‘ 𝑁 ) ) ) | 
						
							| 10 | 9 2 | eqtr4di | ⊢ ( 𝜑  →  ( 𝔼 ‘ 𝑁 )  =  𝑃 ) | 
						
							| 11 | 4 10 | eleqtrrd | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 12 | 5 10 | eleqtrrd | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 13 | 6 10 | eleqtrrd | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 14 | 7 10 | eleqtrrd | ⊢ ( 𝜑  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 15 |  | brcgr | ⊢ ( ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ↔  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 16 | 11 12 13 14 15 | syl22anc | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ↔  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 17 |  | dsid | ⊢ dist  =  Slot  ( dist ‘ ndx ) | 
						
							| 18 |  | fvexd | ⊢ ( 𝜑  →  ( EEG ‘ 𝑁 )  ∈  V ) | 
						
							| 19 |  | eengstr | ⊢ ( 𝑁  ∈  ℕ  →  ( EEG ‘ 𝑁 )  Struct  〈 1 ,  ; 1 7 〉 ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝜑  →  ( EEG ‘ 𝑁 )  Struct  〈 1 ,  ; 1 7 〉 ) | 
						
							| 21 |  | structn0fun | ⊢ ( ( EEG ‘ 𝑁 )  Struct  〈 1 ,  ; 1 7 〉  →  Fun  ( ( EEG ‘ 𝑁 )  ∖  { ∅ } ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  Fun  ( ( EEG ‘ 𝑁 )  ∖  { ∅ } ) ) | 
						
							| 23 |  | structcnvcnv | ⊢ ( ( EEG ‘ 𝑁 )  Struct  〈 1 ,  ; 1 7 〉  →  ◡ ◡ ( EEG ‘ 𝑁 )  =  ( ( EEG ‘ 𝑁 )  ∖  { ∅ } ) ) | 
						
							| 24 | 20 23 | syl | ⊢ ( 𝜑  →  ◡ ◡ ( EEG ‘ 𝑁 )  =  ( ( EEG ‘ 𝑁 )  ∖  { ∅ } ) ) | 
						
							| 25 | 24 | funeqd | ⊢ ( 𝜑  →  ( Fun  ◡ ◡ ( EEG ‘ 𝑁 )  ↔  Fun  ( ( EEG ‘ 𝑁 )  ∖  { ∅ } ) ) ) | 
						
							| 26 | 22 25 | mpbird | ⊢ ( 𝜑  →  Fun  ◡ ◡ ( EEG ‘ 𝑁 ) ) | 
						
							| 27 |  | opex | ⊢ 〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  V | 
						
							| 28 | 27 | prid2 | ⊢ 〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } | 
						
							| 29 |  | elun1 | ⊢ ( 〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  →  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) ) | 
						
							| 30 | 28 29 | ax-mp | ⊢ 〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) | 
						
							| 31 |  | eengv | ⊢ ( 𝑁  ∈  ℕ  →  ( EEG ‘ 𝑁 )  =  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) ) | 
						
							| 32 | 1 31 | syl | ⊢ ( 𝜑  →  ( EEG ‘ 𝑁 )  =  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) ) | 
						
							| 33 | 30 32 | eleqtrrid | ⊢ ( 𝜑  →  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉  ∈  ( EEG ‘ 𝑁 ) ) | 
						
							| 34 |  | fvex | ⊢ ( 𝔼 ‘ 𝑁 )  ∈  V | 
						
							| 35 | 34 34 | mpoex | ⊢ ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) )  ∈  V | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) )  ∈  V ) | 
						
							| 37 | 17 18 26 33 36 | strfv2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) )  =  ( dist ‘ ( EEG ‘ 𝑁 ) ) ) | 
						
							| 38 | 3 37 | eqtr4id | ⊢ ( 𝜑  →   −   =  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ) | 
						
							| 39 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑥  =  𝐴 ) | 
						
							| 40 | 39 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑥 ‘ 𝑖 )  =  ( 𝐴 ‘ 𝑖 ) ) | 
						
							| 41 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑦  =  𝐵 ) | 
						
							| 42 | 41 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑦 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 43 | 40 42 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) )  =  ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 45 | 44 | sumeq2dv | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 46 |  | sumex | ⊢ Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  ∈  V | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  ∈  V ) | 
						
							| 48 | 38 45 11 12 47 | ovmpod | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 49 | 48 | eqcomd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 50 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑥  =  𝐶 ) | 
						
							| 51 | 50 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑥 ‘ 𝑖 )  =  ( 𝐶 ‘ 𝑖 ) ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑦  =  𝐷 ) | 
						
							| 53 | 52 | fveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑦 ‘ 𝑖 )  =  ( 𝐷 ‘ 𝑖 ) ) | 
						
							| 54 | 51 53 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) )  =  ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ) | 
						
							| 55 | 54 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 )  =  ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 56 | 55 | sumeq2dv | ⊢ ( ( 𝜑  ∧  ( 𝑥  =  𝐶  ∧  𝑦  =  𝐷 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 57 |  | sumex | ⊢ Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 )  ∈  V | 
						
							| 58 | 57 | a1i | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 )  ∈  V ) | 
						
							| 59 | 38 56 13 14 58 | ovmpod | ⊢ ( 𝜑  →  ( 𝐶  −  𝐷 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 ) ) | 
						
							| 60 | 59 | eqcomd | ⊢ ( 𝜑  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 )  =  ( 𝐶  −  𝐷 ) ) | 
						
							| 61 | 49 60 | eqeq12d | ⊢ ( 𝜑  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 )  −  ( 𝐵 ‘ 𝑖 ) ) ↑ 2 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 )  −  ( 𝐷 ‘ 𝑖 ) ) ↑ 2 )  ↔  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 62 | 16 61 | bitrd | ⊢ ( 𝜑  →  ( 〈 𝐴 ,  𝐵 〉 Cgr 〈 𝐶 ,  𝐷 〉  ↔  ( 𝐴  −  𝐵 )  =  ( 𝐶  −  𝐷 ) ) ) |