| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eengstr | ⊢ ( 𝑁  ∈  ℕ  →  ( EEG ‘ 𝑁 )  Struct  〈 1 ,  ; 1 7 〉 ) | 
						
							| 2 |  | fvexd | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝔼 ‘ 𝑁 )  ∈  V ) | 
						
							| 3 |  | opex | ⊢ 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  V | 
						
							| 4 | 3 | prid1 | ⊢ 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } | 
						
							| 5 |  | elun1 | ⊢ ( 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  →  〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) | 
						
							| 7 |  | eengv | ⊢ ( 𝑁  ∈  ℕ  →  ( EEG ‘ 𝑁 )  =  ( { 〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 )  −  ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 }  ∪  { 〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( 𝔼 ‘ 𝑁 )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  𝑧  Btwn  〈 𝑥 ,  𝑦 〉 } ) 〉 ,  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( 𝔼 ‘ 𝑁 ) ,  𝑦  ∈  ( ( 𝔼 ‘ 𝑁 )  ∖  { 𝑥 } )  ↦  { 𝑧  ∈  ( 𝔼 ‘ 𝑁 )  ∣  ( 𝑧  Btwn  〈 𝑥 ,  𝑦 〉  ∨  𝑥  Btwn  〈 𝑧 ,  𝑦 〉  ∨  𝑦  Btwn  〈 𝑥 ,  𝑧 〉 ) } ) 〉 } ) ) | 
						
							| 8 | 6 7 | eleqtrrid | ⊢ ( 𝑁  ∈  ℕ  →  〈 ( Base ‘ ndx ) ,  ( 𝔼 ‘ 𝑁 ) 〉  ∈  ( EEG ‘ 𝑁 ) ) | 
						
							| 9 | 1 2 8 | opelstrbas | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝔼 ‘ 𝑁 )  =  ( Base ‘ ( EEG ‘ 𝑁 ) ) ) |