Step |
Hyp |
Ref |
Expression |
1 |
|
eengstr |
⊢ ( 𝑁 ∈ ℕ → ( EEG ‘ 𝑁 ) Struct ⟨ 1 , ; 1 7 ⟩ ) |
2 |
|
fvexd |
⊢ ( 𝑁 ∈ ℕ → ( 𝔼 ‘ 𝑁 ) ∈ V ) |
3 |
|
opex |
⊢ ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ V |
4 |
3
|
prid1 |
⊢ ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ⟩ } |
5 |
|
elun1 |
⊢ ( ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ⟩ } → ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) ) |
6 |
4 5
|
ax-mp |
⊢ ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) |
7 |
|
eengv |
⊢ ( 𝑁 ∈ ℕ → ( EEG ‘ 𝑁 ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) ) |
8 |
6 7
|
eleqtrrid |
⊢ ( 𝑁 ∈ ℕ → ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ ∈ ( EEG ‘ 𝑁 ) ) |
9 |
1 2 8
|
opelstrbas |
⊢ ( 𝑁 ∈ ℕ → ( 𝔼 ‘ 𝑁 ) = ( Base ‘ ( EEG ‘ 𝑁 ) ) ) |