Metamath Proof Explorer


Theorem eengv

Description: The value of the Euclidean geometry for dimension N . (Contributed by Thierry Arnoux, 15-Mar-2019)

Ref Expression
Assertion eengv ( 𝑁 ∈ ℕ → ( EEG ‘ 𝑁 ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
2 1 opeq2d ( 𝑛 = 𝑁 → ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ = ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ )
3 1 adantr ( ( 𝑛 = 𝑁𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
4 simpl ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → 𝑛 = 𝑁 )
5 4 oveq2d ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) )
6 5 sumeq1d ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) )
7 1 3 6 mpoeq123dva ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) )
8 7 opeq2d ( 𝑛 = 𝑁 → ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ = ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ )
9 2 8 preq12d ( 𝑛 = 𝑁 → { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } )
10 1 adantr ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
11 10 rabeqdv ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } )
12 1 3 11 mpoeq123dva ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) )
13 12 opeq2d ( 𝑛 = 𝑁 → ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ = ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ )
14 3 difeq1d ( ( 𝑛 = 𝑁𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) → ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) = ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) )
15 1 rabeqdv ( 𝑛 = 𝑁 → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } )
16 15 adantr ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ) ) → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } )
17 1 14 16 mpoeq123dva ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) )
18 17 opeq2d ( 𝑛 = 𝑁 → ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ = ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ )
19 13 18 preq12d ( 𝑛 = 𝑁 → { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } = { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } )
20 9 19 uneq12d ( 𝑛 = 𝑁 → ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )
21 df-eeng EEG = ( 𝑛 ∈ ℕ ↦ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )
22 prex { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∈ V
23 prex { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ∈ V
24 22 23 unex ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) ∈ V
25 20 21 24 fvmpt ( 𝑁 ∈ ℕ → ( EEG ‘ 𝑁 ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )