Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
2 |
1
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) 〉 = 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 ) |
3 |
1
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → 𝑛 = 𝑁 ) |
5 |
4
|
oveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
6 |
5
|
sumeq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) |
7 |
1 3 6
|
mpoeq123dva |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
8 |
7
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 = 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 ) |
9 |
2 8
|
preq12d |
⊢ ( 𝑛 = 𝑁 → { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ) |
10 |
1
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
11 |
10
|
rabeqdv |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ) ) → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) |
12 |
1 3 11
|
mpoeq123dva |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) ) |
13 |
12
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 = 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 ) |
14 |
3
|
difeq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ) → ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) = ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ) |
15 |
1
|
rabeqdv |
⊢ ( 𝑛 = 𝑁 → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) |
16 |
15
|
adantr |
⊢ ( ( 𝑛 = 𝑁 ∧ ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ) ) → { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } = { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) |
17 |
1 14 16
|
mpoeq123dva |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) = ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) ) |
18 |
17
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 = 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 ) |
19 |
13 18
|
preq12d |
⊢ ( 𝑛 = 𝑁 → { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } = { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) |
20 |
9 19
|
uneq12d |
⊢ ( 𝑛 = 𝑁 → ( { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∪ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∪ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) ) |
21 |
|
df-eeng |
⊢ EEG = ( 𝑛 ∈ ℕ ↦ ( { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∪ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) ) |
22 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∈ V |
23 |
|
prex |
⊢ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ∈ V |
24 |
22 23
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∪ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) ∈ V |
25 |
20 21 24
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( EEG ‘ 𝑁 ) = ( { 〈 ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑁 ) 〉 , 〈 ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝑥 ‘ 𝑖 ) − ( 𝑦 ‘ 𝑖 ) ) ↑ 2 ) ) 〉 } ∪ { 〈 ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑁 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ 𝑧 Btwn 〈 𝑥 , 𝑦 〉 } ) 〉 , 〈 ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑁 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑁 ) ∣ ( 𝑧 Btwn 〈 𝑥 , 𝑦 〉 ∨ 𝑥 Btwn 〈 𝑧 , 𝑦 〉 ∨ 𝑦 Btwn 〈 𝑥 , 𝑧 〉 ) } ) 〉 } ) ) |