Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
2 |
1
|
opeq2d |
|- ( n = N -> <. ( Base ` ndx ) , ( EE ` n ) >. = <. ( Base ` ndx ) , ( EE ` N ) >. ) |
3 |
1
|
adantr |
|- ( ( n = N /\ x e. ( EE ` n ) ) -> ( EE ` n ) = ( EE ` N ) ) |
4 |
|
simpl |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( EE ` n ) ) ) -> n = N ) |
5 |
4
|
oveq2d |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( EE ` n ) ) ) -> ( 1 ... n ) = ( 1 ... N ) ) |
6 |
5
|
sumeq1d |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( EE ` n ) ) ) -> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) |
7 |
1 3 6
|
mpoeq123dva |
|- ( n = N -> ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) = ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) ) |
8 |
7
|
opeq2d |
|- ( n = N -> <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. = <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. ) |
9 |
2 8
|
preq12d |
|- ( n = N -> { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } = { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } ) |
10 |
1
|
adantr |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( EE ` n ) ) ) -> ( EE ` n ) = ( EE ` N ) ) |
11 |
10
|
rabeqdv |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( EE ` n ) ) ) -> { z e. ( EE ` n ) | z Btwn <. x , y >. } = { z e. ( EE ` N ) | z Btwn <. x , y >. } ) |
12 |
1 3 11
|
mpoeq123dva |
|- ( n = N -> ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) = ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) ) |
13 |
12
|
opeq2d |
|- ( n = N -> <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. = <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. ) |
14 |
3
|
difeq1d |
|- ( ( n = N /\ x e. ( EE ` n ) ) -> ( ( EE ` n ) \ { x } ) = ( ( EE ` N ) \ { x } ) ) |
15 |
1
|
rabeqdv |
|- ( n = N -> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } = { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) |
16 |
15
|
adantr |
|- ( ( n = N /\ ( x e. ( EE ` n ) /\ y e. ( ( EE ` n ) \ { x } ) ) ) -> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } = { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) |
17 |
1 14 16
|
mpoeq123dva |
|- ( n = N -> ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) = ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) ) |
18 |
17
|
opeq2d |
|- ( n = N -> <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. = <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. ) |
19 |
13 18
|
preq12d |
|- ( n = N -> { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } = { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) |
20 |
9 19
|
uneq12d |
|- ( n = N -> ( { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
21 |
|
df-eeng |
|- EEG = ( n e. NN |-> ( { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
22 |
|
prex |
|- { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } e. _V |
23 |
|
prex |
|- { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } e. _V |
24 |
22 23
|
unex |
|- ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) e. _V |
25 |
20 21 24
|
fvmpt |
|- ( N e. NN -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |