Step |
Hyp |
Ref |
Expression |
1 |
|
eengv |
|- ( N e. NN -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
2 |
|
1nn |
|- 1 e. NN |
3 |
|
basendx |
|- ( Base ` ndx ) = 1 |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
|
1nn0 |
|- 1 e. NN0 |
6 |
|
1lt10 |
|- 1 < ; 1 0 |
7 |
2 4 5 6
|
declti |
|- 1 < ; 1 2 |
8 |
|
2nn |
|- 2 e. NN |
9 |
5 8
|
decnncl |
|- ; 1 2 e. NN |
10 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
11 |
2 3 7 9 10
|
strle2 |
|- { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } Struct <. 1 , ; 1 2 >. |
12 |
|
6nn |
|- 6 e. NN |
13 |
5 12
|
decnncl |
|- ; 1 6 e. NN |
14 |
|
itvndx |
|- ( Itv ` ndx ) = ; 1 6 |
15 |
|
6nn0 |
|- 6 e. NN0 |
16 |
|
7nn |
|- 7 e. NN |
17 |
|
6lt7 |
|- 6 < 7 |
18 |
5 15 16 17
|
declt |
|- ; 1 6 < ; 1 7 |
19 |
5 16
|
decnncl |
|- ; 1 7 e. NN |
20 |
|
lngndx |
|- ( LineG ` ndx ) = ; 1 7 |
21 |
13 14 18 19 20
|
strle2 |
|- { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } Struct <. ; 1 6 , ; 1 7 >. |
22 |
|
2lt6 |
|- 2 < 6 |
23 |
5 4 12 22
|
declt |
|- ; 1 2 < ; 1 6 |
24 |
11 21 23
|
strleun |
|- ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) Struct <. 1 , ; 1 7 >. |
25 |
1 24
|
eqbrtrdi |
|- ( N e. NN -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |