Step |
Hyp |
Ref |
Expression |
1 |
|
strleun.f |
|- F Struct <. A , B >. |
2 |
|
strleun.g |
|- G Struct <. C , D >. |
3 |
|
strleun.l |
|- B < C |
4 |
|
isstruct |
|- ( F Struct <. A , B >. <-> ( ( A e. NN /\ B e. NN /\ A <_ B ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( A ... B ) ) ) |
5 |
1 4
|
mpbi |
|- ( ( A e. NN /\ B e. NN /\ A <_ B ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( A ... B ) ) |
6 |
5
|
simp1i |
|- ( A e. NN /\ B e. NN /\ A <_ B ) |
7 |
6
|
simp1i |
|- A e. NN |
8 |
|
isstruct |
|- ( G Struct <. C , D >. <-> ( ( C e. NN /\ D e. NN /\ C <_ D ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( C ... D ) ) ) |
9 |
2 8
|
mpbi |
|- ( ( C e. NN /\ D e. NN /\ C <_ D ) /\ Fun ( G \ { (/) } ) /\ dom G C_ ( C ... D ) ) |
10 |
9
|
simp1i |
|- ( C e. NN /\ D e. NN /\ C <_ D ) |
11 |
10
|
simp2i |
|- D e. NN |
12 |
6
|
simp3i |
|- A <_ B |
13 |
6
|
simp2i |
|- B e. NN |
14 |
13
|
nnrei |
|- B e. RR |
15 |
10
|
simp1i |
|- C e. NN |
16 |
15
|
nnrei |
|- C e. RR |
17 |
14 16 3
|
ltleii |
|- B <_ C |
18 |
7
|
nnrei |
|- A e. RR |
19 |
18 14 16
|
letri |
|- ( ( A <_ B /\ B <_ C ) -> A <_ C ) |
20 |
12 17 19
|
mp2an |
|- A <_ C |
21 |
10
|
simp3i |
|- C <_ D |
22 |
11
|
nnrei |
|- D e. RR |
23 |
18 16 22
|
letri |
|- ( ( A <_ C /\ C <_ D ) -> A <_ D ) |
24 |
20 21 23
|
mp2an |
|- A <_ D |
25 |
7 11 24
|
3pm3.2i |
|- ( A e. NN /\ D e. NN /\ A <_ D ) |
26 |
5
|
simp2i |
|- Fun ( F \ { (/) } ) |
27 |
9
|
simp2i |
|- Fun ( G \ { (/) } ) |
28 |
26 27
|
pm3.2i |
|- ( Fun ( F \ { (/) } ) /\ Fun ( G \ { (/) } ) ) |
29 |
|
difss |
|- ( F \ { (/) } ) C_ F |
30 |
|
dmss |
|- ( ( F \ { (/) } ) C_ F -> dom ( F \ { (/) } ) C_ dom F ) |
31 |
29 30
|
ax-mp |
|- dom ( F \ { (/) } ) C_ dom F |
32 |
5
|
simp3i |
|- dom F C_ ( A ... B ) |
33 |
31 32
|
sstri |
|- dom ( F \ { (/) } ) C_ ( A ... B ) |
34 |
|
difss |
|- ( G \ { (/) } ) C_ G |
35 |
|
dmss |
|- ( ( G \ { (/) } ) C_ G -> dom ( G \ { (/) } ) C_ dom G ) |
36 |
34 35
|
ax-mp |
|- dom ( G \ { (/) } ) C_ dom G |
37 |
9
|
simp3i |
|- dom G C_ ( C ... D ) |
38 |
36 37
|
sstri |
|- dom ( G \ { (/) } ) C_ ( C ... D ) |
39 |
|
ss2in |
|- ( ( dom ( F \ { (/) } ) C_ ( A ... B ) /\ dom ( G \ { (/) } ) C_ ( C ... D ) ) -> ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) ) |
40 |
33 38 39
|
mp2an |
|- ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) |
41 |
|
fzdisj |
|- ( B < C -> ( ( A ... B ) i^i ( C ... D ) ) = (/) ) |
42 |
3 41
|
ax-mp |
|- ( ( A ... B ) i^i ( C ... D ) ) = (/) |
43 |
|
sseq0 |
|- ( ( ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) C_ ( ( A ... B ) i^i ( C ... D ) ) /\ ( ( A ... B ) i^i ( C ... D ) ) = (/) ) -> ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) ) |
44 |
40 42 43
|
mp2an |
|- ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) |
45 |
|
funun |
|- ( ( ( Fun ( F \ { (/) } ) /\ Fun ( G \ { (/) } ) ) /\ ( dom ( F \ { (/) } ) i^i dom ( G \ { (/) } ) ) = (/) ) -> Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) ) |
46 |
28 44 45
|
mp2an |
|- Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) |
47 |
|
difundir |
|- ( ( F u. G ) \ { (/) } ) = ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) |
48 |
47
|
funeqi |
|- ( Fun ( ( F u. G ) \ { (/) } ) <-> Fun ( ( F \ { (/) } ) u. ( G \ { (/) } ) ) ) |
49 |
46 48
|
mpbir |
|- Fun ( ( F u. G ) \ { (/) } ) |
50 |
|
dmun |
|- dom ( F u. G ) = ( dom F u. dom G ) |
51 |
13
|
nnzi |
|- B e. ZZ |
52 |
11
|
nnzi |
|- D e. ZZ |
53 |
14 16 22
|
letri |
|- ( ( B <_ C /\ C <_ D ) -> B <_ D ) |
54 |
17 21 53
|
mp2an |
|- B <_ D |
55 |
|
eluz2 |
|- ( D e. ( ZZ>= ` B ) <-> ( B e. ZZ /\ D e. ZZ /\ B <_ D ) ) |
56 |
51 52 54 55
|
mpbir3an |
|- D e. ( ZZ>= ` B ) |
57 |
|
fzss2 |
|- ( D e. ( ZZ>= ` B ) -> ( A ... B ) C_ ( A ... D ) ) |
58 |
56 57
|
ax-mp |
|- ( A ... B ) C_ ( A ... D ) |
59 |
32 58
|
sstri |
|- dom F C_ ( A ... D ) |
60 |
7
|
nnzi |
|- A e. ZZ |
61 |
15
|
nnzi |
|- C e. ZZ |
62 |
|
eluz2 |
|- ( C e. ( ZZ>= ` A ) <-> ( A e. ZZ /\ C e. ZZ /\ A <_ C ) ) |
63 |
60 61 20 62
|
mpbir3an |
|- C e. ( ZZ>= ` A ) |
64 |
|
fzss1 |
|- ( C e. ( ZZ>= ` A ) -> ( C ... D ) C_ ( A ... D ) ) |
65 |
63 64
|
ax-mp |
|- ( C ... D ) C_ ( A ... D ) |
66 |
37 65
|
sstri |
|- dom G C_ ( A ... D ) |
67 |
59 66
|
unssi |
|- ( dom F u. dom G ) C_ ( A ... D ) |
68 |
50 67
|
eqsstri |
|- dom ( F u. G ) C_ ( A ... D ) |
69 |
|
isstruct |
|- ( ( F u. G ) Struct <. A , D >. <-> ( ( A e. NN /\ D e. NN /\ A <_ D ) /\ Fun ( ( F u. G ) \ { (/) } ) /\ dom ( F u. G ) C_ ( A ... D ) ) ) |
70 |
25 49 68 69
|
mpbir3an |
|- ( F u. G ) Struct <. A , D >. |