| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elin |
|- ( x e. ( ( J ... K ) i^i ( M ... N ) ) <-> ( x e. ( J ... K ) /\ x e. ( M ... N ) ) ) |
| 2 |
|
elfzel1 |
|- ( x e. ( M ... N ) -> M e. ZZ ) |
| 3 |
2
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. ZZ ) |
| 4 |
3
|
zred |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. RR ) |
| 5 |
|
elfzel2 |
|- ( x e. ( J ... K ) -> K e. ZZ ) |
| 6 |
5
|
adantr |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. ZZ ) |
| 7 |
6
|
zred |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. RR ) |
| 8 |
|
elfzelz |
|- ( x e. ( M ... N ) -> x e. ZZ ) |
| 9 |
8
|
zred |
|- ( x e. ( M ... N ) -> x e. RR ) |
| 10 |
9
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x e. RR ) |
| 11 |
|
elfzle1 |
|- ( x e. ( M ... N ) -> M <_ x ) |
| 12 |
11
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ x ) |
| 13 |
|
elfzle2 |
|- ( x e. ( J ... K ) -> x <_ K ) |
| 14 |
13
|
adantr |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x <_ K ) |
| 15 |
4 10 7 12 14
|
letrd |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ K ) |
| 16 |
4 7 15
|
lensymd |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> -. K < M ) |
| 17 |
1 16
|
sylbi |
|- ( x e. ( ( J ... K ) i^i ( M ... N ) ) -> -. K < M ) |
| 18 |
17
|
con2i |
|- ( K < M -> -. x e. ( ( J ... K ) i^i ( M ... N ) ) ) |
| 19 |
18
|
eq0rdv |
|- ( K < M -> ( ( J ... K ) i^i ( M ... N ) ) = (/) ) |