Step |
Hyp |
Ref |
Expression |
0 |
|
ceeng |
|- EEG |
1 |
|
vn |
|- n |
2 |
|
cn |
|- NN |
3 |
|
cbs |
|- Base |
4 |
|
cnx |
|- ndx |
5 |
4 3
|
cfv |
|- ( Base ` ndx ) |
6 |
|
cee |
|- EE |
7 |
1
|
cv |
|- n |
8 |
7 6
|
cfv |
|- ( EE ` n ) |
9 |
5 8
|
cop |
|- <. ( Base ` ndx ) , ( EE ` n ) >. |
10 |
|
cds |
|- dist |
11 |
4 10
|
cfv |
|- ( dist ` ndx ) |
12 |
|
vx |
|- x |
13 |
|
vy |
|- y |
14 |
|
vi |
|- i |
15 |
|
c1 |
|- 1 |
16 |
|
cfz |
|- ... |
17 |
15 7 16
|
co |
|- ( 1 ... n ) |
18 |
12
|
cv |
|- x |
19 |
14
|
cv |
|- i |
20 |
19 18
|
cfv |
|- ( x ` i ) |
21 |
|
cmin |
|- - |
22 |
13
|
cv |
|- y |
23 |
19 22
|
cfv |
|- ( y ` i ) |
24 |
20 23 21
|
co |
|- ( ( x ` i ) - ( y ` i ) ) |
25 |
|
cexp |
|- ^ |
26 |
|
c2 |
|- 2 |
27 |
24 26 25
|
co |
|- ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) |
28 |
17 27 14
|
csu |
|- sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) |
29 |
12 13 8 8 28
|
cmpo |
|- ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) |
30 |
11 29
|
cop |
|- <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. |
31 |
9 30
|
cpr |
|- { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } |
32 |
|
citv |
|- Itv |
33 |
4 32
|
cfv |
|- ( Itv ` ndx ) |
34 |
|
vz |
|- z |
35 |
34
|
cv |
|- z |
36 |
|
cbtwn |
|- Btwn |
37 |
18 22
|
cop |
|- <. x , y >. |
38 |
35 37 36
|
wbr |
|- z Btwn <. x , y >. |
39 |
38 34 8
|
crab |
|- { z e. ( EE ` n ) | z Btwn <. x , y >. } |
40 |
12 13 8 8 39
|
cmpo |
|- ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) |
41 |
33 40
|
cop |
|- <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. |
42 |
|
clng |
|- LineG |
43 |
4 42
|
cfv |
|- ( LineG ` ndx ) |
44 |
18
|
csn |
|- { x } |
45 |
8 44
|
cdif |
|- ( ( EE ` n ) \ { x } ) |
46 |
35 22
|
cop |
|- <. z , y >. |
47 |
18 46 36
|
wbr |
|- x Btwn <. z , y >. |
48 |
18 35
|
cop |
|- <. x , z >. |
49 |
22 48 36
|
wbr |
|- y Btwn <. x , z >. |
50 |
38 47 49
|
w3o |
|- ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) |
51 |
50 34 8
|
crab |
|- { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } |
52 |
12 13 8 45 51
|
cmpo |
|- ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) |
53 |
43 52
|
cop |
|- <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. |
54 |
41 53
|
cpr |
|- { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } |
55 |
31 54
|
cun |
|- ( { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) |
56 |
1 2 55
|
cmpt |
|- ( n e. NN |-> ( { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
57 |
0 56
|
wceq |
|- EEG = ( n e. NN |-> ( { <. ( Base ` ndx ) , ( EE ` n ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> sum_ i e. ( 1 ... n ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` n ) , y e. ( EE ` n ) |-> { z e. ( EE ` n ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` n ) , y e. ( ( EE ` n ) \ { x } ) |-> { z e. ( EE ` n ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |