Metamath Proof Explorer


Definition df-eeng

Description: Define the geometry structure for EE ^ N . (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Assertion df-eeng EEG = ( 𝑛 ∈ ℕ ↦ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceeng EEG
1 vn 𝑛
2 cn
3 cbs Base
4 cnx ndx
5 4 3 cfv ( Base ‘ ndx )
6 cee 𝔼
7 1 cv 𝑛
8 7 6 cfv ( 𝔼 ‘ 𝑛 )
9 5 8 cop ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩
10 cds dist
11 4 10 cfv ( dist ‘ ndx )
12 vx 𝑥
13 vy 𝑦
14 vi 𝑖
15 c1 1
16 cfz ...
17 15 7 16 co ( 1 ... 𝑛 )
18 12 cv 𝑥
19 14 cv 𝑖
20 19 18 cfv ( 𝑥𝑖 )
21 cmin
22 13 cv 𝑦
23 19 22 cfv ( 𝑦𝑖 )
24 20 23 21 co ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) )
25 cexp
26 c2 2
27 24 26 25 co ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 )
28 17 27 14 csu Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 )
29 12 13 8 8 28 cmpo ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) )
30 11 29 cop ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩
31 9 30 cpr { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ }
32 citv Itv
33 4 32 cfv ( Itv ‘ ndx )
34 vz 𝑧
35 34 cv 𝑧
36 cbtwn Btwn
37 18 22 cop 𝑥 , 𝑦
38 35 37 36 wbr 𝑧 Btwn ⟨ 𝑥 , 𝑦
39 38 34 8 crab { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ }
40 12 13 8 8 39 cmpo ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } )
41 33 40 cop ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩
42 clng LineG
43 4 42 cfv ( LineG ‘ ndx )
44 18 csn { 𝑥 }
45 8 44 cdif ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } )
46 35 22 cop 𝑧 , 𝑦
47 18 46 36 wbr 𝑥 Btwn ⟨ 𝑧 , 𝑦
48 18 35 cop 𝑥 , 𝑧
49 22 48 36 wbr 𝑦 Btwn ⟨ 𝑥 , 𝑧
50 38 47 49 w3o ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ )
51 50 34 8 crab { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) }
52 12 13 8 45 51 cmpo ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } )
53 43 52 cop ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩
54 41 53 cpr { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ }
55 31 54 cun ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } )
56 1 2 55 cmpt ( 𝑛 ∈ ℕ ↦ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )
57 0 56 wceq EEG = ( 𝑛 ∈ ℕ ↦ ( { ⟨ ( Base ‘ ndx ) , ( 𝔼 ‘ 𝑛 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( ( ( 𝑥𝑖 ) − ( 𝑦𝑖 ) ) ↑ 2 ) ) ⟩ } ∪ { ⟨ ( Itv ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( 𝔼 ‘ 𝑛 ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ } ) ⟩ , ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( 𝔼 ‘ 𝑛 ) , 𝑦 ∈ ( ( 𝔼 ‘ 𝑛 ) ∖ { 𝑥 } ) ↦ { 𝑧 ∈ ( 𝔼 ‘ 𝑛 ) ∣ ( 𝑧 Btwn ⟨ 𝑥 , 𝑦 ⟩ ∨ 𝑥 Btwn ⟨ 𝑧 , 𝑦 ⟩ ∨ 𝑦 Btwn ⟨ 𝑥 , 𝑧 ⟩ ) } ) ⟩ } ) )