Step |
Hyp |
Ref |
Expression |
1 |
|
ecgrtg.1 |
|- ( ph -> N e. NN ) |
2 |
|
ecgrtg.2 |
|- P = ( Base ` ( EEG ` N ) ) |
3 |
|
ecgrtg.3 |
|- .- = ( dist ` ( EEG ` N ) ) |
4 |
|
ecgrtg.a |
|- ( ph -> A e. P ) |
5 |
|
ecgrtg.b |
|- ( ph -> B e. P ) |
6 |
|
ecgrtg.c |
|- ( ph -> C e. P ) |
7 |
|
ecgrtg.d |
|- ( ph -> D e. P ) |
8 |
|
eengbas |
|- ( N e. NN -> ( EE ` N ) = ( Base ` ( EEG ` N ) ) ) |
9 |
1 8
|
syl |
|- ( ph -> ( EE ` N ) = ( Base ` ( EEG ` N ) ) ) |
10 |
9 2
|
eqtr4di |
|- ( ph -> ( EE ` N ) = P ) |
11 |
4 10
|
eleqtrrd |
|- ( ph -> A e. ( EE ` N ) ) |
12 |
5 10
|
eleqtrrd |
|- ( ph -> B e. ( EE ` N ) ) |
13 |
6 10
|
eleqtrrd |
|- ( ph -> C e. ( EE ` N ) ) |
14 |
7 10
|
eleqtrrd |
|- ( ph -> D e. ( EE ` N ) ) |
15 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
16 |
11 12 13 14 15
|
syl22anc |
|- ( ph -> ( <. A , B >. Cgr <. C , D >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
17 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
18 |
|
fvexd |
|- ( ph -> ( EEG ` N ) e. _V ) |
19 |
|
eengstr |
|- ( N e. NN -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |
20 |
1 19
|
syl |
|- ( ph -> ( EEG ` N ) Struct <. 1 , ; 1 7 >. ) |
21 |
|
structn0fun |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
22 |
20 21
|
syl |
|- ( ph -> Fun ( ( EEG ` N ) \ { (/) } ) ) |
23 |
|
structcnvcnv |
|- ( ( EEG ` N ) Struct <. 1 , ; 1 7 >. -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
24 |
20 23
|
syl |
|- ( ph -> `' `' ( EEG ` N ) = ( ( EEG ` N ) \ { (/) } ) ) |
25 |
24
|
funeqd |
|- ( ph -> ( Fun `' `' ( EEG ` N ) <-> Fun ( ( EEG ` N ) \ { (/) } ) ) ) |
26 |
22 25
|
mpbird |
|- ( ph -> Fun `' `' ( EEG ` N ) ) |
27 |
|
opex |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. _V |
28 |
27
|
prid2 |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } |
29 |
|
elun1 |
|- ( <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } -> <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
30 |
28 29
|
ax-mp |
|- <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) |
31 |
|
eengv |
|- ( N e. NN -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
32 |
1 31
|
syl |
|- ( ph -> ( EEG ` N ) = ( { <. ( Base ` ndx ) , ( EE ` N ) >. , <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. } u. { <. ( Itv ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> { z e. ( EE ` N ) | z Btwn <. x , y >. } ) >. , <. ( LineG ` ndx ) , ( x e. ( EE ` N ) , y e. ( ( EE ` N ) \ { x } ) |-> { z e. ( EE ` N ) | ( z Btwn <. x , y >. \/ x Btwn <. z , y >. \/ y Btwn <. x , z >. ) } ) >. } ) ) |
33 |
30 32
|
eleqtrrid |
|- ( ph -> <. ( dist ` ndx ) , ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) >. e. ( EEG ` N ) ) |
34 |
|
fvex |
|- ( EE ` N ) e. _V |
35 |
34 34
|
mpoex |
|- ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) e. _V |
36 |
35
|
a1i |
|- ( ph -> ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) e. _V ) |
37 |
17 18 26 33 36
|
strfv2d |
|- ( ph -> ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) = ( dist ` ( EEG ` N ) ) ) |
38 |
3 37
|
eqtr4id |
|- ( ph -> .- = ( x e. ( EE ` N ) , y e. ( EE ` N ) |-> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) ) ) |
39 |
|
simplrl |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> x = A ) |
40 |
39
|
fveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( A ` i ) ) |
41 |
|
simplrr |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> y = B ) |
42 |
41
|
fveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( B ` i ) ) |
43 |
40 42
|
oveq12d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) - ( y ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( ph /\ ( x = A /\ y = B ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
45 |
44
|
sumeq2dv |
|- ( ( ph /\ ( x = A /\ y = B ) ) -> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
46 |
|
sumex |
|- sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. _V |
47 |
46
|
a1i |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. _V ) |
48 |
38 45 11 12 47
|
ovmpod |
|- ( ph -> ( A .- B ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
49 |
48
|
eqcomd |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( A .- B ) ) |
50 |
|
simplrl |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> x = C ) |
51 |
50
|
fveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( x ` i ) = ( C ` i ) ) |
52 |
|
simplrr |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> y = D ) |
53 |
52
|
fveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( y ` i ) = ( D ` i ) ) |
54 |
51 53
|
oveq12d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( ( x ` i ) - ( y ` i ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
55 |
54
|
oveq1d |
|- ( ( ( ph /\ ( x = C /\ y = D ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
56 |
55
|
sumeq2dv |
|- ( ( ph /\ ( x = C /\ y = D ) ) -> sum_ i e. ( 1 ... N ) ( ( ( x ` i ) - ( y ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
57 |
|
sumex |
|- sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. _V |
58 |
57
|
a1i |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) e. _V ) |
59 |
38 56 13 14 58
|
ovmpod |
|- ( ph -> ( C .- D ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
60 |
59
|
eqcomd |
|- ( ph -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) = ( C .- D ) ) |
61 |
49 60
|
eqeq12d |
|- ( ph -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) <-> ( A .- B ) = ( C .- D ) ) ) |
62 |
16 61
|
bitrd |
|- ( ph -> ( <. A , B >. Cgr <. C , D >. <-> ( A .- B ) = ( C .- D ) ) ) |