Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
|- <. A , B >. e. _V |
2 |
|
opex |
|- <. C , D >. e. _V |
3 |
|
eleq1 |
|- ( x = <. A , B >. -> ( x e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) |
4 |
3
|
anbi1d |
|- ( x = <. A , B >. -> ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) ) |
5 |
|
fveq2 |
|- ( x = <. A , B >. -> ( 1st ` x ) = ( 1st ` <. A , B >. ) ) |
6 |
5
|
fveq1d |
|- ( x = <. A , B >. -> ( ( 1st ` x ) ` i ) = ( ( 1st ` <. A , B >. ) ` i ) ) |
7 |
|
fveq2 |
|- ( x = <. A , B >. -> ( 2nd ` x ) = ( 2nd ` <. A , B >. ) ) |
8 |
7
|
fveq1d |
|- ( x = <. A , B >. -> ( ( 2nd ` x ) ` i ) = ( ( 2nd ` <. A , B >. ) ` i ) ) |
9 |
6 8
|
oveq12d |
|- ( x = <. A , B >. -> ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) = ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ) |
10 |
9
|
oveq1d |
|- ( x = <. A , B >. -> ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) ) |
11 |
10
|
sumeq2sdv |
|- ( x = <. A , B >. -> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) ) |
12 |
11
|
eqeq1d |
|- ( x = <. A , B >. -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) ) |
13 |
4 12
|
anbi12d |
|- ( x = <. A , B >. -> ( ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) ) ) |
14 |
13
|
rexbidv |
|- ( x = <. A , B >. -> ( E. n e. NN ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) ) ) |
15 |
|
eleq1 |
|- ( y = <. C , D >. -> ( y e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) |
16 |
15
|
anbi2d |
|- ( y = <. C , D >. -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) <-> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) ) |
17 |
|
fveq2 |
|- ( y = <. C , D >. -> ( 1st ` y ) = ( 1st ` <. C , D >. ) ) |
18 |
17
|
fveq1d |
|- ( y = <. C , D >. -> ( ( 1st ` y ) ` i ) = ( ( 1st ` <. C , D >. ) ` i ) ) |
19 |
|
fveq2 |
|- ( y = <. C , D >. -> ( 2nd ` y ) = ( 2nd ` <. C , D >. ) ) |
20 |
19
|
fveq1d |
|- ( y = <. C , D >. -> ( ( 2nd ` y ) ` i ) = ( ( 2nd ` <. C , D >. ) ` i ) ) |
21 |
18 20
|
oveq12d |
|- ( y = <. C , D >. -> ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) = ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ) |
22 |
21
|
oveq1d |
|- ( y = <. C , D >. -> ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) = ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) |
23 |
22
|
sumeq2sdv |
|- ( y = <. C , D >. -> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) |
24 |
23
|
eqeq2d |
|- ( y = <. C , D >. -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
25 |
16 24
|
anbi12d |
|- ( y = <. C , D >. -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) <-> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) ) |
26 |
25
|
rexbidv |
|- ( y = <. C , D >. -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) ) |
27 |
|
df-cgr |
|- Cgr = { <. x , y >. | E. n e. NN ( ( x e. ( ( EE ` n ) X. ( EE ` n ) ) /\ y e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` x ) ` i ) - ( ( 2nd ` x ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` y ) ` i ) - ( ( 2nd ` y ) ` i ) ) ^ 2 ) ) } |
28 |
1 2 14 26 27
|
brab |
|- ( <. A , B >. Cgr <. C , D >. <-> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
29 |
|
opelxp2 |
|- ( <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) -> D e. ( EE ` n ) ) |
30 |
29
|
ad2antll |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> D e. ( EE ` n ) ) |
31 |
|
simplrr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> D e. ( EE ` N ) ) |
32 |
|
eedimeq |
|- ( ( D e. ( EE ` n ) /\ D e. ( EE ` N ) ) -> n = N ) |
33 |
30 31 32
|
syl2anc |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> n = N ) |
34 |
33
|
adantlr |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> n = N ) |
35 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
36 |
35
|
sumeq1d |
|- ( n = N -> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) ) |
37 |
35
|
sumeq1d |
|- ( n = N -> sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) |
38 |
36 37
|
eqeq12d |
|- ( n = N -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
39 |
34 38
|
syl |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
40 |
|
op1stg |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1st ` <. A , B >. ) = A ) |
41 |
40
|
fveq1d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( 1st ` <. A , B >. ) ` i ) = ( A ` i ) ) |
42 |
|
op2ndg |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 2nd ` <. A , B >. ) = B ) |
43 |
42
|
fveq1d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( 2nd ` <. A , B >. ) ` i ) = ( B ` i ) ) |
44 |
41 43
|
oveq12d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) = ( ( A ` i ) - ( B ` i ) ) ) |
45 |
44
|
oveq1d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
46 |
45
|
sumeq2sdv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
47 |
|
op1stg |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 1st ` <. C , D >. ) = C ) |
48 |
47
|
fveq1d |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( ( 1st ` <. C , D >. ) ` i ) = ( C ` i ) ) |
49 |
|
op2ndg |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( 2nd ` <. C , D >. ) = D ) |
50 |
49
|
fveq1d |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( ( 2nd ` <. C , D >. ) ` i ) = ( D ` i ) ) |
51 |
48 50
|
oveq12d |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) = ( ( C ` i ) - ( D ` i ) ) ) |
52 |
51
|
oveq1d |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) = ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
53 |
52
|
sumeq2sdv |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) |
54 |
46 53
|
eqeqan12d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
55 |
54
|
ad2antrr |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
56 |
39 55
|
bitrd |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
57 |
56
|
biimpd |
|- ( ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) /\ ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) ) -> ( sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
58 |
57
|
expimpd |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ n e. NN ) -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
59 |
58
|
rexlimdva |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
60 |
|
eleenn |
|- ( D e. ( EE ` N ) -> N e. NN ) |
61 |
60
|
ad2antll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
62 |
|
opelxpi |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
63 |
|
opelxpi |
|- ( ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) -> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) |
64 |
62 63
|
anim12i |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
65 |
64
|
adantr |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) -> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
66 |
54
|
biimpar |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) -> sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) |
67 |
65 66
|
jca |
|- ( ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) -> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
68 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
69 |
68
|
sqxpeqd |
|- ( n = N -> ( ( EE ` n ) X. ( EE ` n ) ) = ( ( EE ` N ) X. ( EE ` N ) ) ) |
70 |
69
|
eleq2d |
|- ( n = N -> ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
71 |
69
|
eleq2d |
|- ( n = N -> ( <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) <-> <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) |
72 |
70 71
|
anbi12d |
|- ( n = N -> ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) <-> ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) ) ) |
73 |
72 38
|
anbi12d |
|- ( n = N -> ( ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) <-> ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) ) |
74 |
73
|
rspcev |
|- ( ( N e. NN /\ ( ( <. A , B >. e. ( ( EE ` N ) X. ( EE ` N ) ) /\ <. C , D >. e. ( ( EE ` N ) X. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
75 |
67 74
|
sylan2 |
|- ( ( N e. NN /\ ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) |
76 |
75
|
exp32 |
|- ( N e. NN -> ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) ) ) |
77 |
61 76
|
mpcom |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) -> E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) ) ) |
78 |
59 77
|
impbid |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( E. n e. NN ( ( <. A , B >. e. ( ( EE ` n ) X. ( EE ` n ) ) /\ <. C , D >. e. ( ( EE ` n ) X. ( EE ` n ) ) ) /\ sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. A , B >. ) ` i ) - ( ( 2nd ` <. A , B >. ) ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... n ) ( ( ( ( 1st ` <. C , D >. ) ` i ) - ( ( 2nd ` <. C , D >. ) ` i ) ) ^ 2 ) ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |
79 |
28 78
|
syl5bb |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( D ` i ) ) ^ 2 ) ) ) |