| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleei |
|- ( A e. ( EE ` N ) -> A : ( 1 ... N ) --> RR ) |
| 2 |
|
eleei |
|- ( A e. ( EE ` M ) -> A : ( 1 ... M ) --> RR ) |
| 3 |
|
fdm |
|- ( A : ( 1 ... N ) --> RR -> dom A = ( 1 ... N ) ) |
| 4 |
|
fdm |
|- ( A : ( 1 ... M ) --> RR -> dom A = ( 1 ... M ) ) |
| 5 |
3 4
|
sylan9req |
|- ( ( A : ( 1 ... N ) --> RR /\ A : ( 1 ... M ) --> RR ) -> ( 1 ... N ) = ( 1 ... M ) ) |
| 6 |
1 2 5
|
syl2an |
|- ( ( A e. ( EE ` N ) /\ A e. ( EE ` M ) ) -> ( 1 ... N ) = ( 1 ... M ) ) |
| 7 |
|
eleenn |
|- ( A e. ( EE ` N ) -> N e. NN ) |
| 8 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 9 |
7 8
|
eleqtrdi |
|- ( A e. ( EE ` N ) -> N e. ( ZZ>= ` 1 ) ) |
| 10 |
9
|
adantr |
|- ( ( A e. ( EE ` N ) /\ A e. ( EE ` M ) ) -> N e. ( ZZ>= ` 1 ) ) |
| 11 |
|
fzopth |
|- ( N e. ( ZZ>= ` 1 ) -> ( ( 1 ... N ) = ( 1 ... M ) <-> ( 1 = 1 /\ N = M ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( A e. ( EE ` N ) /\ A e. ( EE ` M ) ) -> ( ( 1 ... N ) = ( 1 ... M ) <-> ( 1 = 1 /\ N = M ) ) ) |
| 13 |
6 12
|
mpbid |
|- ( ( A e. ( EE ` N ) /\ A e. ( EE ` M ) ) -> ( 1 = 1 /\ N = M ) ) |
| 14 |
13
|
simprd |
|- ( ( A e. ( EE ` N ) /\ A e. ( EE ` M ) ) -> N = M ) |