Metamath Proof Explorer


Theorem eleei

Description: The forward direction of elee . (Contributed by Scott Fenton, 1-Jul-2013)

Ref Expression
Assertion eleei
|- ( A e. ( EE ` N ) -> A : ( 1 ... N ) --> RR )

Proof

Step Hyp Ref Expression
1 eleenn
 |-  ( A e. ( EE ` N ) -> N e. NN )
2 elee
 |-  ( N e. NN -> ( A e. ( EE ` N ) <-> A : ( 1 ... N ) --> RR ) )
3 1 2 syl
 |-  ( A e. ( EE ` N ) -> ( A e. ( EE ` N ) <-> A : ( 1 ... N ) --> RR ) )
4 3 ibi
 |-  ( A e. ( EE ` N ) -> A : ( 1 ... N ) --> RR )