Metamath Proof Explorer


Theorem elee

Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over N space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion elee
|- ( N e. NN -> ( A e. ( EE ` N ) <-> A : ( 1 ... N ) --> RR ) )

Proof

Step Hyp Ref Expression
1 oveq2
 |-  ( n = N -> ( 1 ... n ) = ( 1 ... N ) )
2 1 oveq2d
 |-  ( n = N -> ( RR ^m ( 1 ... n ) ) = ( RR ^m ( 1 ... N ) ) )
3 df-ee
 |-  EE = ( n e. NN |-> ( RR ^m ( 1 ... n ) ) )
4 ovex
 |-  ( RR ^m ( 1 ... N ) ) e. _V
5 2 3 4 fvmpt
 |-  ( N e. NN -> ( EE ` N ) = ( RR ^m ( 1 ... N ) ) )
6 5 eleq2d
 |-  ( N e. NN -> ( A e. ( EE ` N ) <-> A e. ( RR ^m ( 1 ... N ) ) ) )
7 reex
 |-  RR e. _V
8 ovex
 |-  ( 1 ... N ) e. _V
9 7 8 elmap
 |-  ( A e. ( RR ^m ( 1 ... N ) ) <-> A : ( 1 ... N ) --> RR )
10 6 9 bitrdi
 |-  ( N e. NN -> ( A e. ( EE ` N ) <-> A : ( 1 ... N ) --> RR ) )