Step |
Hyp |
Ref |
Expression |
1 |
|
elee |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) e. ( EE ` N ) <-> ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR ) ) |
2 |
|
ovex |
|- ( A F B ) e. _V |
3 |
|
eqid |
|- ( k e. ( 1 ... N ) |-> ( A F B ) ) = ( k e. ( 1 ... N ) |-> ( A F B ) ) |
4 |
2 3
|
fnmpti |
|- ( k e. ( 1 ... N ) |-> ( A F B ) ) Fn ( 1 ... N ) |
5 |
|
df-f |
|- ( ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR <-> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) Fn ( 1 ... N ) /\ ran ( k e. ( 1 ... N ) |-> ( A F B ) ) C_ RR ) ) |
6 |
4 5
|
mpbiran |
|- ( ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR <-> ran ( k e. ( 1 ... N ) |-> ( A F B ) ) C_ RR ) |
7 |
3
|
rnmpt |
|- ran ( k e. ( 1 ... N ) |-> ( A F B ) ) = { a | E. k e. ( 1 ... N ) a = ( A F B ) } |
8 |
7
|
sseq1i |
|- ( ran ( k e. ( 1 ... N ) |-> ( A F B ) ) C_ RR <-> { a | E. k e. ( 1 ... N ) a = ( A F B ) } C_ RR ) |
9 |
|
abss |
|- ( { a | E. k e. ( 1 ... N ) a = ( A F B ) } C_ RR <-> A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) ) |
10 |
|
nfre1 |
|- F/ k E. k e. ( 1 ... N ) a = ( A F B ) |
11 |
|
nfv |
|- F/ k a e. RR |
12 |
10 11
|
nfim |
|- F/ k ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) |
13 |
12
|
nfal |
|- F/ k A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) |
14 |
|
r19.23v |
|- ( A. k e. ( 1 ... N ) ( a = ( A F B ) -> a e. RR ) <-> ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) ) |
15 |
14
|
albii |
|- ( A. a A. k e. ( 1 ... N ) ( a = ( A F B ) -> a e. RR ) <-> A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) ) |
16 |
|
ralcom4 |
|- ( A. k e. ( 1 ... N ) A. a ( a = ( A F B ) -> a e. RR ) <-> A. a A. k e. ( 1 ... N ) ( a = ( A F B ) -> a e. RR ) ) |
17 |
|
rsp |
|- ( A. k e. ( 1 ... N ) A. a ( a = ( A F B ) -> a e. RR ) -> ( k e. ( 1 ... N ) -> A. a ( a = ( A F B ) -> a e. RR ) ) ) |
18 |
2
|
clel2 |
|- ( ( A F B ) e. RR <-> A. a ( a = ( A F B ) -> a e. RR ) ) |
19 |
17 18
|
syl6ibr |
|- ( A. k e. ( 1 ... N ) A. a ( a = ( A F B ) -> a e. RR ) -> ( k e. ( 1 ... N ) -> ( A F B ) e. RR ) ) |
20 |
16 19
|
sylbir |
|- ( A. a A. k e. ( 1 ... N ) ( a = ( A F B ) -> a e. RR ) -> ( k e. ( 1 ... N ) -> ( A F B ) e. RR ) ) |
21 |
15 20
|
sylbir |
|- ( A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) -> ( k e. ( 1 ... N ) -> ( A F B ) e. RR ) ) |
22 |
13 21
|
ralrimi |
|- ( A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) -> A. k e. ( 1 ... N ) ( A F B ) e. RR ) |
23 |
|
nfra1 |
|- F/ k A. k e. ( 1 ... N ) ( A F B ) e. RR |
24 |
|
rsp |
|- ( A. k e. ( 1 ... N ) ( A F B ) e. RR -> ( k e. ( 1 ... N ) -> ( A F B ) e. RR ) ) |
25 |
|
eleq1a |
|- ( ( A F B ) e. RR -> ( a = ( A F B ) -> a e. RR ) ) |
26 |
24 25
|
syl6 |
|- ( A. k e. ( 1 ... N ) ( A F B ) e. RR -> ( k e. ( 1 ... N ) -> ( a = ( A F B ) -> a e. RR ) ) ) |
27 |
23 11 26
|
rexlimd |
|- ( A. k e. ( 1 ... N ) ( A F B ) e. RR -> ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) ) |
28 |
27
|
alrimiv |
|- ( A. k e. ( 1 ... N ) ( A F B ) e. RR -> A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) ) |
29 |
22 28
|
impbii |
|- ( A. a ( E. k e. ( 1 ... N ) a = ( A F B ) -> a e. RR ) <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) |
30 |
9 29
|
bitri |
|- ( { a | E. k e. ( 1 ... N ) a = ( A F B ) } C_ RR <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) |
31 |
8 30
|
bitri |
|- ( ran ( k e. ( 1 ... N ) |-> ( A F B ) ) C_ RR <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) |
32 |
6 31
|
bitri |
|- ( ( k e. ( 1 ... N ) |-> ( A F B ) ) : ( 1 ... N ) --> RR <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) |
33 |
1 32
|
bitrdi |
|- ( N e. NN -> ( ( k e. ( 1 ... N ) |-> ( A F B ) ) e. ( EE ` N ) <-> A. k e. ( 1 ... N ) ( A F B ) e. RR ) ) |