Metamath Proof Explorer


Theorem mptelee

Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013)

Ref Expression
Assertion mptelee N k 1 N A F B 𝔼 N k 1 N A F B

Proof

Step Hyp Ref Expression
1 elee N k 1 N A F B 𝔼 N k 1 N A F B : 1 N
2 ovex A F B V
3 eqid k 1 N A F B = k 1 N A F B
4 2 3 fnmpti k 1 N A F B Fn 1 N
5 df-f k 1 N A F B : 1 N k 1 N A F B Fn 1 N ran k 1 N A F B
6 4 5 mpbiran k 1 N A F B : 1 N ran k 1 N A F B
7 3 rnmpt ran k 1 N A F B = a | k 1 N a = A F B
8 7 sseq1i ran k 1 N A F B a | k 1 N a = A F B
9 abss a | k 1 N a = A F B a k 1 N a = A F B a
10 nfre1 k k 1 N a = A F B
11 nfv k a
12 10 11 nfim k k 1 N a = A F B a
13 12 nfal k a k 1 N a = A F B a
14 r19.23v k 1 N a = A F B a k 1 N a = A F B a
15 14 albii a k 1 N a = A F B a a k 1 N a = A F B a
16 ralcom4 k 1 N a a = A F B a a k 1 N a = A F B a
17 rsp k 1 N a a = A F B a k 1 N a a = A F B a
18 2 clel2 A F B a a = A F B a
19 17 18 syl6ibr k 1 N a a = A F B a k 1 N A F B
20 16 19 sylbir a k 1 N a = A F B a k 1 N A F B
21 15 20 sylbir a k 1 N a = A F B a k 1 N A F B
22 13 21 ralrimi a k 1 N a = A F B a k 1 N A F B
23 nfra1 k k 1 N A F B
24 rsp k 1 N A F B k 1 N A F B
25 eleq1a A F B a = A F B a
26 24 25 syl6 k 1 N A F B k 1 N a = A F B a
27 23 11 26 rexlimd k 1 N A F B k 1 N a = A F B a
28 27 alrimiv k 1 N A F B a k 1 N a = A F B a
29 22 28 impbii a k 1 N a = A F B a k 1 N A F B
30 9 29 bitri a | k 1 N a = A F B k 1 N A F B
31 8 30 bitri ran k 1 N A F B k 1 N A F B
32 6 31 bitri k 1 N A F B : 1 N k 1 N A F B
33 1 32 bitrdi N k 1 N A F B 𝔼 N k 1 N A F B