Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mptelee | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elee | |
|
2 | ovex | |
|
3 | eqid | |
|
4 | 2 3 | fnmpti | |
5 | df-f | |
|
6 | 4 5 | mpbiran | |
7 | 3 | rnmpt | |
8 | 7 | sseq1i | |
9 | abss | |
|
10 | nfre1 | |
|
11 | nfv | |
|
12 | 10 11 | nfim | |
13 | 12 | nfal | |
14 | r19.23v | |
|
15 | 14 | albii | |
16 | ralcom4 | |
|
17 | rsp | |
|
18 | 2 | clel2 | |
19 | 17 18 | imbitrrdi | |
20 | 16 19 | sylbir | |
21 | 15 20 | sylbir | |
22 | 13 21 | ralrimi | |
23 | nfra1 | |
|
24 | rsp | |
|
25 | eleq1a | |
|
26 | 24 25 | syl6 | |
27 | 23 11 26 | rexlimd | |
28 | 27 | alrimiv | |
29 | 22 28 | impbii | |
30 | 9 29 | bitri | |
31 | 8 30 | bitri | |
32 | 6 31 | bitri | |
33 | 1 32 | bitrdi | |