Metamath Proof Explorer


Theorem nfal

Description: If x is not free in ph , then it is not free in A. y ph . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis nfal.1 xφ
Assertion nfal xyφ

Proof

Step Hyp Ref Expression
1 nfal.1 xφ
2 1 nf5ri φxφ
3 2 hbal yφxyφ
4 3 nf5i xyφ