Description: If x is not free in ph , then it is not free in A. y ph . (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfal.1 | |- F/ x ph |
|
Assertion | nfal | |- F/ x A. y ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 | |- F/ x ph |
|
2 | 1 | nf5ri | |- ( ph -> A. x ph ) |
3 | 2 | hbal | |- ( A. y ph -> A. x A. y ph ) |
4 | 3 | nf5i | |- F/ x A. y ph |