Metamath Proof Explorer


Theorem nfal

Description: If x is not free in ph , then it is not free in A. y ph . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis nfal.1 𝑥 𝜑
Assertion nfal 𝑥𝑦 𝜑

Proof

Step Hyp Ref Expression
1 nfal.1 𝑥 𝜑
2 1 nf5ri ( 𝜑 → ∀ 𝑥 𝜑 )
3 2 hbal ( ∀ 𝑦 𝜑 → ∀ 𝑥𝑦 𝜑 )
4 3 nf5i 𝑥𝑦 𝜑