Metamath Proof Explorer


Theorem hbal

Description: If x is not free in ph , it is not free in A. y ph . (Contributed by NM, 12-Mar-1993)

Ref Expression
Hypothesis hbal.1 φxφ
Assertion hbal yφxyφ

Proof

Step Hyp Ref Expression
1 hbal.1 φxφ
2 1 alimi yφyxφ
3 ax-11 yxφxyφ
4 2 3 syl yφxyφ