Step |
Hyp |
Ref |
Expression |
1 |
|
elee |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |
2 |
|
ovex |
⊢ ( 𝐴 𝐹 𝐵 ) ∈ V |
3 |
|
eqid |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) = ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) |
4 |
2 3
|
fnmpti |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) Fn ( 1 ... 𝑁 ) |
5 |
|
df-f |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ↔ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) Fn ( 1 ... 𝑁 ) ∧ ran ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ⊆ ℝ ) ) |
6 |
4 5
|
mpbiran |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ↔ ran ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ⊆ ℝ ) |
7 |
3
|
rnmpt |
⊢ ran ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) = { 𝑎 ∣ ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) } |
8 |
7
|
sseq1i |
⊢ ( ran ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ⊆ ℝ ↔ { 𝑎 ∣ ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) } ⊆ ℝ ) |
9 |
|
abss |
⊢ ( { 𝑎 ∣ ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) } ⊆ ℝ ↔ ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
10 |
|
nfre1 |
⊢ Ⅎ 𝑘 ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) |
11 |
|
nfv |
⊢ Ⅎ 𝑘 𝑎 ∈ ℝ |
12 |
10 11
|
nfim |
⊢ Ⅎ 𝑘 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) |
13 |
12
|
nfal |
⊢ Ⅎ 𝑘 ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) |
14 |
|
r19.23v |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ↔ ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑎 ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ↔ ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
16 |
|
ralcom4 |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ↔ ∀ 𝑎 ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
17 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ∀ 𝑎 ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) ) |
18 |
2
|
clel2 |
⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ ℝ ↔ ∀ 𝑎 ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
19 |
17 18
|
syl6ibr |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ∀ 𝑎 ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |
20 |
16 19
|
sylbir |
⊢ ( ∀ 𝑎 ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |
21 |
15 20
|
sylbir |
⊢ ( ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |
22 |
13 21
|
ralrimi |
⊢ ( ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) |
23 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ |
24 |
|
rsp |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |
25 |
|
eleq1a |
⊢ ( ( 𝐴 𝐹 𝐵 ) ∈ ℝ → ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
26 |
24 25
|
syl6 |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ → ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) ) |
27 |
23 11 26
|
rexlimd |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ → ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
28 |
27
|
alrimiv |
⊢ ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ → ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ) |
29 |
22 28
|
impbii |
⊢ ( ∀ 𝑎 ( ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) → 𝑎 ∈ ℝ ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) |
30 |
9 29
|
bitri |
⊢ ( { 𝑎 ∣ ∃ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑎 = ( 𝐴 𝐹 𝐵 ) } ⊆ ℝ ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) |
31 |
8 30
|
bitri |
⊢ ( ran ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ⊆ ℝ ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) |
32 |
6 31
|
bitri |
⊢ ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) : ( 1 ... 𝑁 ) ⟶ ℝ ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) |
33 |
1 32
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ ( 𝐴 𝐹 𝐵 ) ) ∈ ( 𝔼 ‘ 𝑁 ) ↔ ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 𝐹 𝐵 ) ∈ ℝ ) ) |