Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ℝ ↑m ( 1 ... 𝑛 ) ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
3 |
|
df-ee |
⊢ 𝔼 = ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) ) |
4 |
|
ovex |
⊢ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∈ V |
5 |
2 3 4
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝔼 ‘ 𝑁 ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
6 |
5
|
eleq2d |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
9 |
7 8
|
elmap |
⊢ ( 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
10 |
6 9
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) ) |