Metamath Proof Explorer


Theorem elee

Description: Membership in a Euclidean space. We define Euclidean space here using Cartesian coordinates over N space. We later abstract away from this using Tarski's geometry axioms, so this exact definition is unimportant. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion elee ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) )
2 1 oveq2d ( 𝑛 = 𝑁 → ( ℝ ↑m ( 1 ... 𝑛 ) ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) )
3 df-ee 𝔼 = ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) )
4 ovex ( ℝ ↑m ( 1 ... 𝑁 ) ) ∈ V
5 2 3 4 fvmpt ( 𝑁 ∈ ℕ → ( 𝔼 ‘ 𝑁 ) = ( ℝ ↑m ( 1 ... 𝑁 ) ) )
6 5 eleq2d ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) )
7 reex ℝ ∈ V
8 ovex ( 1 ... 𝑁 ) ∈ V
9 7 8 elmap ( 𝐴 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ )
10 6 9 bitrdi ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ↔ 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ ) )