Metamath Proof Explorer
Definition df-ee
Description: Define the Euclidean space generator. For details, see elee .
(Contributed by Scott Fenton, 3-Jun-2013)
|
|
Ref |
Expression |
|
Assertion |
df-ee |
⊢ 𝔼 = ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cee |
⊢ 𝔼 |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn |
⊢ ℕ |
3 |
|
cr |
⊢ ℝ |
4 |
|
cmap |
⊢ ↑m |
5 |
|
c1 |
⊢ 1 |
6 |
|
cfz |
⊢ ... |
7 |
1
|
cv |
⊢ 𝑛 |
8 |
5 7 6
|
co |
⊢ ( 1 ... 𝑛 ) |
9 |
3 8 4
|
co |
⊢ ( ℝ ↑m ( 1 ... 𝑛 ) ) |
10 |
1 2 9
|
cmpt |
⊢ ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) ) |
11 |
0 10
|
wceq |
⊢ 𝔼 = ( 𝑛 ∈ ℕ ↦ ( ℝ ↑m ( 1 ... 𝑛 ) ) ) |