Database
ELEMENTARY GEOMETRY
Geometry in Hilbert spaces
Geometry in Euclidean spaces
Definition of the Euclidean space
eleenn
Next ⟩
eleei
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleenn
Description:
If
A
is in
( EE
N )
, then
N
is a natural.
(Contributed by
Scott Fenton
, 1-Jul-2013)
Ref
Expression
Assertion
eleenn
⊢
A
∈
𝔼
⁡
N
→
N
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
df-ee
⊢
𝔼
=
n
∈
ℕ
⟼
ℝ
1
…
n
2
1
mptrcl
⊢
A
∈
𝔼
⁡
N
→
N
∈
ℕ