Metamath Proof Explorer


Theorem eleenn

Description: If A is in ( EEN ) , then N is a natural. (Contributed by Scott Fenton, 1-Jul-2013)

Ref Expression
Assertion eleenn A 𝔼 N N

Proof

Step Hyp Ref Expression
1 df-ee 𝔼 = n 1 n
2 1 mptrcl A 𝔼 N N