Description: If A is in ( EEN ) , then N is a natural. (Contributed by Scott Fenton, 1-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | eleenn | |- ( A e. ( EE ` N ) -> N e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ee | |- EE = ( n e. NN |-> ( RR ^m ( 1 ... n ) ) ) |
|
2 | 1 | mptrcl | |- ( A e. ( EE ` N ) -> N e. NN ) |