Metamath Proof Explorer


Theorem eedimeq

Description: A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013)

Ref Expression
Assertion eedimeq A𝔼NA𝔼MN=M

Proof

Step Hyp Ref Expression
1 eleei A𝔼NA:1N
2 eleei A𝔼MA:1M
3 fdm A:1NdomA=1N
4 fdm A:1MdomA=1M
5 3 4 sylan9req A:1NA:1M1N=1M
6 1 2 5 syl2an A𝔼NA𝔼M1N=1M
7 eleenn A𝔼NN
8 nnuz =1
9 7 8 eleqtrdi A𝔼NN1
10 9 adantr A𝔼NA𝔼MN1
11 fzopth N11N=1M1=1N=M
12 10 11 syl A𝔼NA𝔼M1N=1M1=1N=M
13 6 12 mpbid A𝔼NA𝔼M1=1N=M
14 13 simprd A𝔼NA𝔼MN=M