Metamath Proof Explorer


Theorem eedimeq

Description: A point belongs to at most one Euclidean space. (Contributed by Scott Fenton, 1-Jul-2013)

Ref Expression
Assertion eedimeq A 𝔼 N A 𝔼 M N = M

Proof

Step Hyp Ref Expression
1 eleei A 𝔼 N A : 1 N
2 eleei A 𝔼 M A : 1 M
3 fdm A : 1 N dom A = 1 N
4 fdm A : 1 M dom A = 1 M
5 3 4 sylan9req A : 1 N A : 1 M 1 N = 1 M
6 1 2 5 syl2an A 𝔼 N A 𝔼 M 1 N = 1 M
7 eleenn A 𝔼 N N
8 nnuz = 1
9 7 8 eleqtrdi A 𝔼 N N 1
10 9 adantr A 𝔼 N A 𝔼 M N 1
11 fzopth N 1 1 N = 1 M 1 = 1 N = M
12 10 11 syl A 𝔼 N A 𝔼 M 1 N = 1 M 1 = 1 N = M
13 6 12 mpbid A 𝔼 N A 𝔼 M 1 = 1 N = M
14 13 simprd A 𝔼 N A 𝔼 M N = M